In this paper, we extend a methodology developed recently to study type-III intermittency considering different values of the noise intensity and the lower boundary of reinjection (LBR). We obtain accurate analytic expressions for the reinjection probability density (RPD). The proposed RPD has a piecewise definition depending on the nonlinear behavior, the LBR value, and the noise intensity. The new RPD is a sum of exponential functions with exponent α + 2, where α is the exponent of the noiseless RPD. The theoretical results are verified with the numerical simulations.
Issue Section:
Research Papers
References
1.
Manneville
, P.
, and Pomeau
, Y.
, 1979
, “Intermittency and Lorenz Model
,” Phys. Lett. A
, 75
, pp. 1
–2
.2.
Manneville
, P.
, 1980
, “Intermittency, Self-Similarity and 1/f Spectrum in Dissipative Dynamical Systems
,” J. Phys.
, 41
(11
), pp. 1235
–1243
.3.
Schuster
, H.
, and Just
, W.
, 2005
, Deterministic Chaos
, Wiley VCH, Mörlenbach
, Germany
.4.
Nayfeh
, A.
, and Balachandran
, B.
, 1995
, Applied Nonlinear Dynamics
, Wiley
, New York, NY
.5.
Kaplan
, H.
, 1992
, “Return to Type-I Intermittency
,” Phys. Rev. Lett.
, 68
(5
), pp. 553
–557
.6.
Price
, T.
, and Mullin
, P.
, 1991
, “An Experimental Observation of a New Type of Intermittency
,” Phys. D
, 48
(1
), pp. 29
–52
.7.
Platt
, N.
, Spiegel
, E.
, and Tresser
, C.
, 1993
, “On-Off Intermittency: A Mechanism for Bursting
,” Phys. Rev. Lett.
, 70
(3
), pp. 279
–282
.8.
Pikovsky
, A.
, Osipov
, G.
, Rosenblum
, M.
, Zaks
, M.
, and Kurths
, J.
, 1997
, “Attractor-Repeller Collision and Eyelet Intermittency at the Transition to Phase Synchronization
,” Phys. Rev. Lett.
, 79
(1
), pp. 47
–50
.9.
Lee
, K.
, Kwak
, Y.
, and Lim
, T.
, 1998
, “Phase Jumps Near a Phase Synchronization Transition in Systems of Two Coupled Chaotic Oscillators
,” Phys. Rev. Lett.
, 81
(2
), pp. 321
–324
.10.
Hramov
, A.
, Koronovskii
, A.
, Kurovskaya
, M.
, and Boccaletti
, S.
, 2006
, “Ring Intermittency in Coupled Chaotic Oscillators at the Boundary of Phase Synchronization
,” Phys. Rev. Lett.
, 97
(11
), p. 114101
.11.
Dubois
, M.
, Rubio
, M.
, and Berge
, P.
, 1983
, “Experimental Evidence of Intermittencies Associated With a Subharmonic Bifurcation
,” Phys. Rev. Lett.
, 16
, pp. 1446
–1449
.12.
Stavrinides
, S.
, Miliou
, A.
, Laopoulos
, T.
, and Anagnostopoulos
, A.
, 2008
, “The Intermittency Route to Chaos of an Electronic Digital Oscillator
,” Int. J. Bifurcation Chaos
, 18
(05
), pp. 1561
–1566
.13.
Sanmartin
, J.
, Lopez-Rebollal
, O.
, del Rio
, E.
, and Elaskar
, S.
, 2004
, “Hard Transition to Chaotic Dynamics in Alfvén Wave Fronts
,” Phys. Plasmas
, 11
(5
), pp. 2026
–2035
.14.
Sanchez-Arriaga
, G.
, Sanmartin
, J.
, and Elaskar
, S.
, 2007
, “Damping Models in the Truncated Derivative Nonlinear Schrödinger Equation
,” Phys. Plasmas
, 14
(8
), p. 082108
.15.
Pizza
, G.
, Frouzakis
, G.
, and Mantzaras
, J.
, 2012
, “Chaotic Dynamics in Premixed Hydrogen/Air Channel Flow Combustion
,” Combust. Theor. Model
, 16
(2
), pp. 275
–299
.16.
Stan
, C.
, Cristescu
, C.
, and Dimitriu
, D.
, 2010
, “Analysis of the Intermittency Behavior in a Low-Temperature Discharge Plasma by Recurrence Plot Quantification
,” Phys. Plasmas
, 17
(4
), p. 042115
.17.
Chian
, A.
, 2007
, Complex Systems Approach to Economic Dynamics
(Lecture Notes in Economics and Mathematical Systems, Vol. 592
), Springer-Verlag
, Berlin
.18.
Zebrowski
, J.
, and Baranowski
, R.
, 2004
, “Type I Intermittency in Nonstationary Systems—Models and Human Heart Rate Variability
,” Phys. A
, 336
, pp. 74
–86
.19.
Paradisi
, P.
, Allegrini
, P.
, Gemignani
, A.
, Laurino
, M.
, Menicucci
, D.
, and Piarulli
, A.
, 2012
, “Scaling and Intermittency of Brains Events as a Manifestation of Consciousness
,” AIP Conf. Proc.
, 1510
, pp. 151
–161
.20.
Laugesen
, J.
, Carlsson
, N.
, Mosckilde
, E.
, and Bountis
, T.
, 1997
, “Anomalous Statistics for Type-III Intermittency
,” Open Syst. Inf. Dyn.
, 4
(4
), pp. 393
–405
.21.
Elaskar
, S.
, del Rio
, E.
, and Donoso
, J.
, 2011
, “Reinjection Probability Density in Type-III Intermittency
,” Phys. A
, 390
(15
), pp. 2759
–2768
.22.
Rosso
, O.
, Larrondo
, H.
, Martin
, M.
, Plastino
, A.
, and Fuentes
, M.
, 2007
, “Distinguishing Noise From Chaos
,” Phys. Rev. Lett.
, 99
(15
), p. 154102
.23.
Hirsch
, E.
, Huberman
, B.
, and Scalapino
, D.
, 1982
, “Theory of Intermittency
,” Phys. Lett. A
, 25
, pp. 519
–532
.24.
Koronovskii
, A.
, and Hramov
, A.
, 2008
, “Type-II Intermittency Characteristics in the Presence of Noise
,” Eur. Phys. J. B
, 62
(4
), pp. 447
–452
.25.
Kye
, W.
, Rim
, S.
, Kim
, C.
, Lee
, J.
, Ryu
, J.
, Yeom
, B.
, and Park
, Y.
, 2003
, “Experimental Observation of Characteristic Relations of Type-III Intermittency in the Presence of Noise in a Simple Electronic Circuit
,” Phys. Rev. E
, 68
(3
), p. 036203
.26.
del Rio
, E.
, Sanjuan
, M.
, and Elaskar
, S.
, 2012
, “Effect of Noise on the Reinjection Probability Density in Intermittency
,” Commun. Nonlinear Sci. Numer. Simul.
, 17
(9
), pp. 3587
–3596
.27.
Elaskar
, S.
, del Rio
, E.
, Krause
, G.
, and Costa
, A.
, 2014
, “Effect of the Lower Boundary of Reinjection and Noise in Type-II Intermittency
,” Nonlinear Dyn.
, 79
(2), pp. 1411
–1424
.28.
Kye
, W.
, and Kim
, C.
, 2000
, “Characteristic Relations of Type-I Intermittency in Presence of Noise
,” Phys. Rev. E
, 62
(5
), pp. 6304
–6307
.29.
del Rio
, E.
, and Elaskar
, S.
, 2010
, “New Characteristic Relation in Type-II Intermittency
,” Int. J. Bifurcation Chaos
, 20
(04
), pp. 1185
–1191
.30.
Elaskar
, S.
, and del Rio
, E.
, 2012
, “Intermittency Reinjection Probability Function With and Without Noise Effects
,” Latest Trends in Circuits, Automatics Control and Signal Processing
, WSEAS
, Barcelona, Spain, pp. 145
–154
.31.
del Rio
, E.
, Elaskar
, S.
, and Makarov
, V.
, 2013
, “Theory of Intermittency Applied to Classical Pathological Cases
,” Chaos
, 23
, p. 033112
.32.
del Rio
, E.
, Elaskar
, S.
, and Donoso
, J.
, 2014
, “Laminar Length and Characteristic Relation in Type-I Intermittency
,” Commun. Nonlinear Sci. Numer. Simul.
, 19
(4
), pp. 967
–976
.33.
Krause
, G.
, Elaskar
, S.
, and del Rio
, E.
, 2014
, “Type-I Intermittency With Discontinuous Reinjection Probability Density in a Truncation Model of the Derivative Nonlinear Schrödinger Equation
,” Nonlinear Dyn.
, 77
(3
), pp. 455
–466
.34.
Krause
, G.
, Elaskar
, S.
, and del Rio
, E.
, 2014
, “Noise Effect on Statistical Properties of Type-I Intermittency
,” Phys. A
, 402
, pp. 318
–329
.35.
del Rio
, E.
, and Elaskar
, S.
, 2016
, “The Intermittency Route to Chaos
,” Handbook of Applications of Chaos Theory
, C. H.
Skiadas
and C.
Skiadas
, eds., CRC Press Book
, Boca Raton, FL, pp. 3
–20
.36.
Elaskar
, S.
, and del Rio
, E.
, 2016
, New Advances in Chaotic Intermittency and Applications
, Springer
, Berlin
.Copyright © 2017 by ASME
You do not currently have access to this content.