In this paper, we extend a methodology developed recently to study type-III intermittency considering different values of the noise intensity and the lower boundary of reinjection (LBR). We obtain accurate analytic expressions for the reinjection probability density (RPD). The proposed RPD has a piecewise definition depending on the nonlinear behavior, the LBR value, and the noise intensity. The new RPD is a sum of exponential functions with exponent α + 2, where α is the exponent of the noiseless RPD. The theoretical results are verified with the numerical simulations.

References

1.
Manneville
,
P.
, and
Pomeau
,
Y.
,
1979
, “
Intermittency and Lorenz Model
,”
Phys. Lett. A
,
75
, pp.
1
2
.
2.
Manneville
,
P.
,
1980
, “
Intermittency, Self-Similarity and 1/f Spectrum in Dissipative Dynamical Systems
,”
J. Phys.
,
41
(
11
), pp.
1235
1243
.
3.
Schuster
,
H.
, and
Just
,
W.
,
2005
,
Deterministic Chaos
,
Wiley VCH, Mörlenbach
,
Germany
.
4.
Nayfeh
,
A.
, and
Balachandran
,
B.
,
1995
,
Applied Nonlinear Dynamics
,
Wiley
,
New York, NY
.
5.
Kaplan
,
H.
,
1992
, “
Return to Type-I Intermittency
,”
Phys. Rev. Lett.
,
68
(
5
), pp.
553
557
.
6.
Price
,
T.
, and
Mullin
,
P.
,
1991
, “
An Experimental Observation of a New Type of Intermittency
,”
Phys. D
,
48
(
1
), pp.
29
52
.
7.
Platt
,
N.
,
Spiegel
,
E.
, and
Tresser
,
C.
,
1993
, “
On-Off Intermittency: A Mechanism for Bursting
,”
Phys. Rev. Lett.
,
70
(
3
), pp.
279
282
.
8.
Pikovsky
,
A.
,
Osipov
,
G.
,
Rosenblum
,
M.
,
Zaks
,
M.
, and
Kurths
,
J.
,
1997
, “
Attractor-Repeller Collision and Eyelet Intermittency at the Transition to Phase Synchronization
,”
Phys. Rev. Lett.
,
79
(
1
), pp.
47
50
.
9.
Lee
,
K.
,
Kwak
,
Y.
, and
Lim
,
T.
,
1998
, “
Phase Jumps Near a Phase Synchronization Transition in Systems of Two Coupled Chaotic Oscillators
,”
Phys. Rev. Lett.
,
81
(
2
), pp.
321
324
.
10.
Hramov
,
A.
,
Koronovskii
,
A.
,
Kurovskaya
,
M.
, and
Boccaletti
,
S.
,
2006
, “
Ring Intermittency in Coupled Chaotic Oscillators at the Boundary of Phase Synchronization
,”
Phys. Rev. Lett.
,
97
(
11
), p.
114101
.
11.
Dubois
,
M.
,
Rubio
,
M.
, and
Berge
,
P.
,
1983
, “
Experimental Evidence of Intermittencies Associated With a Subharmonic Bifurcation
,”
Phys. Rev. Lett.
,
16
, pp.
1446
1449
.
12.
Stavrinides
,
S.
,
Miliou
,
A.
,
Laopoulos
,
T.
, and
Anagnostopoulos
,
A.
,
2008
, “
The Intermittency Route to Chaos of an Electronic Digital Oscillator
,”
Int. J. Bifurcation Chaos
,
18
(
05
), pp.
1561
1566
.
13.
Sanmartin
,
J.
,
Lopez-Rebollal
,
O.
,
del Rio
,
E.
, and
Elaskar
,
S.
,
2004
, “
Hard Transition to Chaotic Dynamics in Alfvén Wave Fronts
,”
Phys. Plasmas
,
11
(
5
), pp.
2026
2035
.
14.
Sanchez-Arriaga
,
G.
,
Sanmartin
,
J.
, and
Elaskar
,
S.
,
2007
, “
Damping Models in the Truncated Derivative Nonlinear Schrödinger Equation
,”
Phys. Plasmas
,
14
(
8
), p.
082108
.
15.
Pizza
,
G.
,
Frouzakis
,
G.
, and
Mantzaras
,
J.
,
2012
, “
Chaotic Dynamics in Premixed Hydrogen/Air Channel Flow Combustion
,”
Combust. Theor. Model
,
16
(
2
), pp.
275
299
.
16.
Stan
,
C.
,
Cristescu
,
C.
, and
Dimitriu
,
D.
,
2010
, “
Analysis of the Intermittency Behavior in a Low-Temperature Discharge Plasma by Recurrence Plot Quantification
,”
Phys. Plasmas
,
17
(
4
), p.
042115
.
17.
Chian
,
A.
,
2007
,
Complex Systems Approach to Economic Dynamics
(Lecture Notes in Economics and Mathematical Systems, Vol.
592
),
Springer-Verlag
,
Berlin
.
18.
Zebrowski
,
J.
, and
Baranowski
,
R.
,
2004
, “
Type I Intermittency in Nonstationary Systems—Models and Human Heart Rate Variability
,”
Phys. A
,
336
, pp.
74
86
.
19.
Paradisi
,
P.
,
Allegrini
,
P.
,
Gemignani
,
A.
,
Laurino
,
M.
,
Menicucci
,
D.
, and
Piarulli
,
A.
,
2012
, “
Scaling and Intermittency of Brains Events as a Manifestation of Consciousness
,”
AIP Conf. Proc.
,
1510
, pp.
151
161
.
20.
Laugesen
,
J.
,
Carlsson
,
N.
,
Mosckilde
,
E.
, and
Bountis
,
T.
,
1997
, “
Anomalous Statistics for Type-III Intermittency
,”
Open Syst. Inf. Dyn.
,
4
(
4
), pp.
393
405
.
21.
Elaskar
,
S.
,
del Rio
,
E.
, and
Donoso
,
J.
,
2011
, “
Reinjection Probability Density in Type-III Intermittency
,”
Phys. A
,
390
(
15
), pp.
2759
2768
.
22.
Rosso
,
O.
,
Larrondo
,
H.
,
Martin
,
M.
,
Plastino
,
A.
, and
Fuentes
,
M.
,
2007
, “
Distinguishing Noise From Chaos
,”
Phys. Rev. Lett.
,
99
(
15
), p.
154102
.
23.
Hirsch
,
E.
,
Huberman
,
B.
, and
Scalapino
,
D.
,
1982
, “
Theory of Intermittency
,”
Phys. Lett. A
,
25
, pp.
519
532
.
24.
Koronovskii
,
A.
, and
Hramov
,
A.
,
2008
, “
Type-II Intermittency Characteristics in the Presence of Noise
,”
Eur. Phys. J. B
,
62
(
4
), pp.
447
452
.
25.
Kye
,
W.
,
Rim
,
S.
,
Kim
,
C.
,
Lee
,
J.
,
Ryu
,
J.
,
Yeom
,
B.
, and
Park
,
Y.
,
2003
, “
Experimental Observation of Characteristic Relations of Type-III Intermittency in the Presence of Noise in a Simple Electronic Circuit
,”
Phys. Rev. E
,
68
(
3
), p.
036203
.
26.
del Rio
,
E.
,
Sanjuan
,
M.
, and
Elaskar
,
S.
,
2012
, “
Effect of Noise on the Reinjection Probability Density in Intermittency
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
9
), pp.
3587
3596
.
27.
Elaskar
,
S.
,
del Rio
,
E.
,
Krause
,
G.
, and
Costa
,
A.
,
2014
, “
Effect of the Lower Boundary of Reinjection and Noise in Type-II Intermittency
,”
Nonlinear Dyn.
,
79
(2), pp.
1411
1424
.
28.
Kye
,
W.
, and
Kim
,
C.
,
2000
, “
Characteristic Relations of Type-I Intermittency in Presence of Noise
,”
Phys. Rev. E
,
62
(
5
), pp.
6304
6307
.
29.
del Rio
,
E.
, and
Elaskar
,
S.
,
2010
, “
New Characteristic Relation in Type-II Intermittency
,”
Int. J. Bifurcation Chaos
,
20
(
04
), pp.
1185
1191
.
30.
Elaskar
,
S.
, and
del Rio
,
E.
,
2012
, “
Intermittency Reinjection Probability Function With and Without Noise Effects
,”
Latest Trends in Circuits, Automatics Control and Signal Processing
,
WSEAS
, Barcelona, Spain, pp.
145
154
.
31.
del Rio
,
E.
,
Elaskar
,
S.
, and
Makarov
,
V.
,
2013
, “
Theory of Intermittency Applied to Classical Pathological Cases
,”
Chaos
,
23
, p.
033112
.
32.
del Rio
,
E.
,
Elaskar
,
S.
, and
Donoso
,
J.
,
2014
, “
Laminar Length and Characteristic Relation in Type-I Intermittency
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
4
), pp.
967
976
.
33.
Krause
,
G.
,
Elaskar
,
S.
, and
del Rio
,
E.
,
2014
, “
Type-I Intermittency With Discontinuous Reinjection Probability Density in a Truncation Model of the Derivative Nonlinear Schrödinger Equation
,”
Nonlinear Dyn.
,
77
(
3
), pp.
455
466
.
34.
Krause
,
G.
,
Elaskar
,
S.
, and
del Rio
,
E.
,
2014
, “
Noise Effect on Statistical Properties of Type-I Intermittency
,”
Phys. A
,
402
, pp.
318
329
.
35.
del Rio
,
E.
, and
Elaskar
,
S.
,
2016
, “
The Intermittency Route to Chaos
,”
Handbook of Applications of Chaos Theory
,
C. H.
Skiadas
and
C.
Skiadas
, eds.,
CRC Press Book
, Boca Raton, FL, pp.
3
20
.
36.
Elaskar
,
S.
, and
del Rio
,
E.
,
2016
,
New Advances in Chaotic Intermittency and Applications
,
Springer
,
Berlin
.
You do not currently have access to this content.