This work investigates the modification of the Nóse–Hoover thermostat, a well-known tool for controlling system temperature in nanoscale dynamical simulations. Nóse–Hoover response is characterized by a mean temperature converging to a target temperature. However, oscillations in the actual system temperature consistently appear over time. To reduce these oscillations, the Nóse–Hoover control law is modified to resemble a proportional–derivative controller. The modified thermostat is compared to the standard and shown to significantly reduce deviations. Gains are varied and compared to show effects on response and simulation time. Work–energy calculations show the modified dynamics drive the system to a low-energy state significantly faster than the standard. The behavior of the modified thermostat is illustrated using a simulation of a molten salt solution.

References

1.
Nose
,
S.
,
1984
, “
A Molecular Dynamics Method for Simulations in the Canonical Ensemble
,”
Mol. Phys.
,
52
(
2
), pp.
255
268
.
2.
Hoover
,
W. G.
,
1985
, “
Canonical Dynamics: Equilibrium Phase-Space Distributions
,”
Phys. Rev. A
,
31
(
3
), pp.
1695
1697
.
3.
Vaidehi
,
N.
,
Jain
,
A.
, and
Goddard
,
W. A.
,
1996
, “
Constant Temperature Constrained Molecular Dynamics: The Newton-Euler Inverse Mass Operator Method
,”
J. Phys. Chem.
,
100
(
25
), pp.
10508
10517
.
4.
Poursina
,
M.
, and
Anderson
,
K. S.
,
2013
, “
Canonical Ensemble Simulation of Biopolymers Using a Coarse-Grained Articulated Generalized Divide-and-Conquer Scheme
,”
Comput. Phys. Commun.
,
184
(
3
), pp.
652
660
.
5.
Woodcock
,
L. V.
,
1971
, “
Isothermal Molecular Dynamics Calculations for Liquid Salts
,”
Chem. Phys. Lett.
,
10
(
3
), pp.
257
261
.
6.
Berendsen
,
H. J. C.
,
Postma
,
J. P. M.
,
van Gunsteren
,
W. F.
,
DiNola
,
A.
, and
Haak
,
J. R.
,
1984
, “
Molecular Dynamics With Coupling to an External Bath
,”
J. Chem. Phys.
,
81
(
8
), pp.
3684
3690
.
7.
Evans
,
D. J.
,
Hoover
,
W. G.
,
Failor
,
B. H.
,
Moran
,
B.
, and
Ladd
,
A. J. C.
,
1983
, “
Nonequilibrium Molecular Dynamics Via Gauss's Principle of Least Constraint
,”
Phys. Rev. A
,
28
(
2
), pp.
1016
1021
.
8.
Patra
,
P. K.
, and
Bhattacharya
,
B.
,
2014
, “
A Deterministic Thermostat for Controlling Temperature Using all Degrees of Freedom
,”
J. Chem. Phys.
,
140
(
6
), p.
064106
.
9.
Travis
,
K. P.
, and
Braga
,
C.
,
2008
, “
Configurational Temperature Control for Atomic and Molecular Systems
,”
J. Chem. Phys.
,
128
(
1
), p.
014111
.
10.
Andersen
,
H. C.
,
1980
, “
Molecular Dynamics Simulations at Constant Pressure and/or Temperature
,”
J. Chem. Phys.
,
72
(
4
), pp.
2384
2393
.
11.
Bussi
,
G.
,
Donadio
,
D.
, and
Parrinello
,
M.
,
2007
, “
Canonical Sampling Through Velocity Scaling
,”
J. Chem. Phys.
,
126
(
1
), p.
014101
.
12.
Braga
,
C.
, and
Travis
,
K. P.
,
2005
, “
A Configurational Temperature Nóse-Hoover Thermostat
,”
J. Chem. Phys.
,
123
(
13
), p.
134101
.
13.
Delhommelle
,
J.
, and
Evans
,
D. J.
,
2001
, “
Configurational Temperature Thermostat for Fluids Undergoing Shear Flow: Application to Liquid Chlorine
,”
Mol. Phys.
,
99
(
21
), pp.
1825
1829
.
14.
Gamboa
,
G. U.
,
Vasquez-Perez
,
J. M.
,
Calaminici
,
P.
, and
Koster
,
A. M.
,
2010
, “
Influence of Thermostats on the Calculations of Heat Capacities From Born-Oppenheimer Molecular Dynamics Simulations
,”
Int. J. Quantum Chem.
,
110
(
12
), pp.
2172
2178
.
15.
Bowling
,
A.
,
Palmer
,
A. F.
, and
Wilhelm
,
L.
,
2009
, “
Contact and Impact in the Multibody Dynamics of Motor Protein Locomotion
,”
Langmuir
,
25
(
22
), pp.
12974
12981
.
16.
Haghshenas-Jaryani
,
M.
,
Black
,
B.
,
Ghaffari
,
S.
,
Drake
,
J.
,
Bowling
,
A.
, and
Mohanty
,
S.
,
2014
, “
Dynamics of Microscopic Objects in Optical Tweezers: Experimental Determination of Underdamped Regime and Numerical Simulation Using Multiscale Analysis
,”
Nonlinear Dyn.
,
76
(
2
), pp.
1013
1030
.
17.
Megyes
,
T.
,
Balint
,
S.
,
Peter
,
E.
,
Grosz
,
T.
,
Bako
,
I.
,
Krienke
,
H.
, and
Bellissent-Funel
,
M.-C.
,
2009
, “
Solution Structure of NaNO3 in Water: Diffraction and Molecular Dynamics Simulation Study
,”
J. Phys. Chem. B
,
113
(
13
), pp.
4054
4064
.
You do not currently have access to this content.