We use waveform relaxation (WR) method to solve numerically fractional neutral functional differential equations and mainly consider the convergence of the numerical method with the help of a generalized Volterra-integral operator associated with the Mittag–Leffler function. We first give some properties of the integral operator. Using the proposed properties, we establish the convergence condition of the numerical method. Finally, we provide a new way to prove the convergence of waveform relaxation method for integer-order neutral functional differential equation, which is a special case of fractional neutral functional differential equation. Compared to the existing proof in the literature, our proof is concise and original.

References

1.
Benson
,
D. A.
,
Wheatcraft
,
S. W.
, and
Meerschaert
,
M. M.
,
2000
, “
Application of a Fractional Advection-Dispersion Equation
,”
Water Resour. Res.
,
36
(
6
), pp.
1403
1412
.
2.
Hilfer
,
R.
,
2000
,
Applications of Fractional Calculus in Physics
,
World Scientific
,
Singapore
.
3.
Metzler
,
R.
, and
Klafter
,
J.
,
2000
, “
The Random Walk's Guide to Anomalous Diffusion: A Fractional Dynamics Approach
,”
Phys. Rep.
,
339
(
1
), pp.
1
77
.
4.
Orsingher
,
E.
, and
Beghin
,
L.
,
2004
, “
Time-Fractional Telegraph Equations and Telegraph Processes With Brownian Time
,”
Probab. Theory Relat. Fields
,
128
(1), pp.
141
160
.
5.
Niu
,
M.
, and
Xie
,
B.
,
2012
, “
Impacts of Gaussian Noises on the Blow-Up Times of Nonlinear Stochastic Partial Differential Equations
,”
Nonlinear Anal. Real World Appl.
,
13
(
3
), pp.
1346
1352
.
6.
Ahmad
,
B.
,
Nieto
,
J. J.
,
Alsaedi
,
A.
, and
El-Shahed
,
M.
,
2012
, “
A Study of Nonlinear Langevin Equation Involving Two Fractional Orders in Different Intervals
,”
Nonlinear Anal. Real World Appl.
,
13
(
2
), pp.
599
606
.
7.
Wang
,
J. R.
, and
Zhou
,
Y.
,
2011
, “
A Class of Fractional Evolution Equations and Optimal Controls
,”
Nonlinear Anal. Real World Appl.
,
12
(
1
), pp.
262
272
.
8.
Wang
,
J. R.
,
Zhou
,
Y.
, and
Wei
,
W.
,
2012
, “
Fractional Schrödinger Equations With Potential and Optimal Controls
,”
Nonlinear Anal. Real World Appl.
,
13
(
6
), pp.
2755
2766
.
9.
Povstenko
,
Y. Z.
,
2010
, “
Signaling Problem for Time-Fractional Diffusion-Wave Equation in a Half-Space in the Case of Angular Symmetry
,”
Nonlinear Dyn.
,
59
(
4
), pp.
593
605
.
10.
Mainardi
,
F.
,
1997
,
Fractals and Fractional Calculus Continuum Mechanics
,
Springer Verlag
,
Wien, Germany, New York
.
11.
Malinowska
,
A. B.
, and
Torres
,
D. F. M.
,
2012
, “
Towards a Combined Fractional Mechanics and Quantization
,”
Fractional Calculus Appl. Anal.
,
15
(3), pp.
407
417
.
12.
Hall
,
M. G.
, and
Barrick
,
T. R.
,
2008
, “
From Diffusion-Weighted MRI to Anomalous Diffusion Imaging
,”
Magn. Reson. Med.
,
59
(
3
), pp.
447
455
.
13.
Denton
,
Z.
, and
Vatsala
,
A. S.
,
2010
, “
Fractional Integral Inequalities and Applications
,”
Comput. Math. Appl.
,
59
(
3
), pp.
1087
1094
.
14.
Diethelm
,
K.
, and
Neville
,
J. F.
,
2002
, “
Analysis of Fractional Differential Equations
,”
J. Math. Anal. Appl.
,
265
(
2
), pp.
229
248
.
15.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
(North-Holland Mathematics Studies), Vol.
204
,
Elsevier Science B.V.
,
Amsterdam, The Netherlands
.
16.
Kosmatov
,
N.
,
2009
, “
Integral Equations and Initial Value Problems for Nonlinear Differential Equations of Fractional Order
,”
Nonlinear Anal. Theory Methods Appl.
,
70
(
7
), pp.
2521
2529
.
17.
Lakshmikantham
,
V.
, and
Vatsala
,
A. S.
,
2008
, “
Basic Theory of Fractional Differential Equations
,”
Nonlinear Anal. Theory Methods Appl.
,
69
(
8
), pp.
2677
2682
.
18.
Mirzaee
,
F.
,
Bimesl
,
S.
, and
Tohidi
,
E.
,
2015
, “
Solving Nonlinear Fractional Integro-Differential Equations of Volterra Type Using Novel Mathematical Matrices
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061016
.
19.
Firoozjaee
,
M. A.
,
Yousefi
,
S. A.
,
Jafari
,
H.
, and
Baleanu
,
D.
,
2015
, “
On a Numerical Approach to Solve Multi-Order Fractional Differential Equations With Initial/Boundary Conditions
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061025
.
20.
Saha Ray
,
S.
, and
Sahoo
,
S.
,
2015
, “
Traveling Wave Solutions to Riesz Time-Fractional Camassa–Holm Equation in Modeling for Shallow-Water Waves
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061026
.
21.
Lakshmikantham
,
V.
,
2008
, “
Theory of Fractional Functional Differential Equations
,”
Nonlinear Anal. Theory Methods Appl.
,
69
(
10
), pp.
3337
3343
.
22.
Maraaba
,
T. A.
,
Jarad
,
F.
, and
Baleanu
,
D.
,
2008
, “
On the Existence and the Uniqueness Theorem for Fractional Differential Equations With Bounded Delay Within Caputo Derivatives
,”
Sci. China Ser. A Math.
,
51
(
10
), pp.
1775
1786
.
23.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
New York
.
24.
Agarwal
,
R. P.
,
Zhou
,
Y.
, and
He
,
Y. Y.
,
2010
, “
Existence of Fractional Neutral Functional Differential Equations
,”
Comput. Math. Appl.
,
59
(
3
), pp.
1095
1100
.
25.
Jankowski
,
T.
,
2013
, “
Initial Value Problems for Neutral Fractional Differential Equations Involving a Riemann–Liouville Derivative
,”
Appl. Math. Comput.
,
209
(14), pp.
7772
7779
.
26.
Vijayakumar
,
V.
,
Selvakumar
,
A.
, and
Murugesu
,
R.
,
2014
, “
Controllability for a Class of Fractional Neutral Integro-Differential Equations With Unbounded Delay
,”
Appl. Math. Comput.
,
232
, pp.
303
312
.
27.
Gautam
,
G. R.
, and
Dabas
,
J.
,
2015
, “
Mild Solutions for Class of Neutral Fractional Functional Differential Equations With Not Instantaneous Impulses
,”
Appl. Math. Comput.
,
259
, pp.
480
489
.
28.
Losada
,
J.
,
Nieto
,
J. J.
, and
Pourhadi
,
E.
,
2015
, “
On the Attractivity of Solutions for a Class of Multi-Term Fractional Functional Differential Equations
,”
J. Comput. Appl. Math.
,
312
, pp.
2
12
.
29.
Brzdȩk
,
J.
, and
Eghbali
,
N.
,
2016
, “
On Approximate Solutions of Some Delayed Fractional Differential Equations
,”
Appl. Math. Lett.
,
54
, pp.
31
35
.
30.
Lelarasmee
,
E.
,
Ruehli
,
A.
, and
Sangiovanni-Vincentelli
,
A.
,
1982
, “
The Waveform Relaxation Method for Time Domain Analysis of Large Scale Integrated Circuits
,”
IEEE Trans. Comput. Aided Des.
,
1
(
3
), pp.
131
145
.
31.
Zubik-Kowal
,
B.
, and
Vandewalle
,
S.
,
1999
, “
Waveform Relaxation for Functional-Differential Equations
,”
SIAM J. Sci. Comput.
,
21
(
1
), pp.
207
226
.
32.
Jackiewicz
,
Z.
,
Kwapisz
,
M.
, and
Lo
,
E.
,
1997
, “
Waveform Relaxation Methods for Functional Differential Systems of Neutral Type
,”
J. Math. Anal. Appl.
,
207
(
1
), pp.
255
285
.
33.
Bartoszewski
,
Z.
, and
Kwapisz
,
M.
,
2000
, “
On Error Estimates for Waveform Relaxation Methods for Delay-Differential Equations
,”
SIAM J. Numer. Anal.
,
38
(
2
), pp.
639
659
.
34.
Bartoszewski
,
Z.
, and
Kwapisz
,
M.
,
2004
, “
Delay Dependent Estimations for Waveform Relaxation Methods for Neutral Differential-Functional Systems
,”
Comput. Math. Appl.
,
48
(
12
), pp.
1877
1892
.
35.
Bartoszewski
,
Z.
, and
Kwapisz
,
M.
,
1999
, On the “
Convergence of Waveform Relaxation Methods for Differential-Functional Systems of Equations
,”
J. Math. Anal. Appl.
,
235
(
2
), pp.
478
496
.
36.
Ding
,
X. L.
, and
Jiang
,
Y. L.
,
2013
, “
Waveform Relaxation Methods for Fractional Functional Differential Equations
,”
Fractional Calculus Appl. Anal.
,
16
(3), pp.
573
594
.
37.
Kilbas
,
A. A.
,
Saigo
,
M.
, and
Saxena
,
R. K.
,
2004
, “
Generalized Mittag–Leffler Function and Generalized Fractional Calculus Operators
,”
Integr. Transforms Spec. Funct.
,
15
(
1
), pp.
31
49
.
38.
Shukla
,
A. K.
, and
Prajapati
,
J. C.
,
2007
, “
On a Generalization of Mittag–Leffler Function and Its Properties
,”
J. Math. Anal. Appl.
,
336
(
2
), pp.
797
811
.
39.
Ye
,
H. P.
,
Gao
,
J. M.
, and
Ding
,
Y. S.
,
2007
, “
A Generalized Gronwall Inequality and Its Application to a Fractional Differential Equation
,”
J. Math. Anal. Appl.
,
328
(
2
), pp.
1075
1081
.
40.
Kilbas
,
A. A.
,
Saigo
,
M.
, and
Saxena
,
R. K.
,
2002
, “
Solution of Volterra Integro-Differential Equations With Generalized Mittag–Leffler Function in the Kernels
,”
J. Integr. Equations Appl.
,
14
(
4
), pp.
377
396
.
41.
Ding
,
X. L.
, and
Jiang
,
Y. L.
,
2012
, “
Semilinear Fractional Differential Equations Based on a New Integral Operator Approach
,”
Commun. Nonlinear Sci. Numer. Simul.
,
17
(
12
), pp.
5143
5150
.
42.
Samko
,
S.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach Science Publishers
,
Switzerland
.
You do not currently have access to this content.