This paper addresses the design of a robust fractional-order dynamic output feedback sliding mode controller (FDOF-SMC) for a general class of uncertain fractional systems subject to saturation element. The control law is composed of two components, one linear and one nonlinear. The linear component corresponds to the fractional-order dynamics of the FDOF-SMC, while the nonlinear component is associated with the switching control algorithm. The closed-loop system exhibits asymptotical stability and the system states approach the sliding surface in a finite time. In order to design the controller, a linear matrix inequality (LMI)-based procedure is also derived. Simulation results demonstrate the feasibility of the FDOF-SMC strategy.
References
1.
Sabatier
, J.
, Agrawal
, O. P.
, and Tenreiro Machado
, J. A.
, 2007
, Advances in Fractional Calculus Theoretical Developments and Applications in Physics and Engineering
, Springer
, Berlin
.2.
Das
, S.
, “Fractional Function Calculus
, 2011
, Springer-Verlag
, Berlin
.3.
Tenreiro Machado
, J. A.
, Galhano
, A. M. S. F.
, and Trujillo
, J. J.
, 2014
, “On Development of Fractional Calculus During the Last Fifty Years
,” Scientometrics
, 98
(1
), pp. 577
–582
.4.
Valério
, D.
, Tenreiro Machado
, J. A.
, and Kiryakova
, V.
, 2014
, “Some Pioneers of the Applications of Fractional Calculus
,” Fractional Calculus Appl. Anal.
, 17
(2
), pp. 552
–578
.5.
Valério
, D.
, Trujillo
, J.
, Rivero
, M.
, Tenreiro Machado
, J. A.
, and Baleanu
, D.
, 2013
, “Fractional Calculus: A Survey of Useful Formulas
,” Eur. Phys. J. Spec. Top.
, 222
(8
), pp. 1827
–1846
.6.
Golmankhaneh
, A. K.
, Arefi
, R.
, and Baleanu
, D.
, 2015
, “Synchronization in a Nonidentical Fractional Order of a Proposed Modified System
,” J. Vib. Control
, 21
(6
), pp. 1154
–1161
.7.
A. K.
Golmankhaneh
, Arefi
, R.
, and Baleanu
, D.
, 2013
, “The Proposed Modified Liu System With Fractional Order
,” Adv. Math. Phys.
, 2013
, p. 186037
.8.
Wu
, G. C.
, and Baleanu
, D.
, 2014
, “Chaos Synchronization of the Discrete Fractional Logistic Map
,” Signal Process.
, 102
, pp. 96
–99
.9.
Li
, Y.
, Chen
, Y. Q.
, and Podlubny
, I.
, 2010
, “Stability of Fractional-Order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag-Leffler Stability
,” Comput. Math. Appl.
, 59
(5
), pp. 1810
–1821
.10.
Monje
, C. A.
, Chen
, Y.
, Vinagre
, B. M.
, Xue
, D.
, and Feliu
, V.
, 2010
, Fractional-Order Systems and Controls Fundamentals and Applications
, Springer
, Berlin
.11.
Delavari
, H.
, Baleanu
, D.
, and Sadati
, J.
, 2012
, “Stability Analysis of Caputo Fractional-Order Nonlinear System Revisited
,” Nonlinear Dyn.
, 67
(4
), pp. 2433
–2439
.12.
Aguila-Camacho
, N.
, Duarte-Mermoud
, M. A.
, and Gallegos
, J. A.
, 2014
, “Lyapunov Functions for Fractional Order Systems
,” Commun. Nonlinear Sci. Numer. Simul.
, 19
(9
), pp. 2951
–2957
.13.
Rivero
, M.
, Rogosin
, S. V.
, Tenreiro Machado
, J. A.
, and Trujillo
, J. J.
, “Stability of Fractional Order Systems
,” Math. Probl. Eng.
, 2013
, p. 356215
.14.
Wu
, G. C.
, Baleanu
, D.
, Xie
, H. P.
, and Chen
, F. L.
, 2016
, “Chaos Synchronization of Fractional Chaotic Maps Based on the Stability Conditions
,” Phys. A
, 460
, pp. 374
–383
.15.
Duarte-Mermoud
, M. A.
, Aguila-Camacho
, N. J.
, Gallegos
, A.
, and Castro-Linares
, R.
, 2015
, “Using General Quadratic Lyapunov Functions to Prove Lyapunov Uniform Stability for Fractional Order Systems
,” Commun. Nonlinear Sci. Numer. Simul.
, 22
(1–3
), pp. 650
–659
.16.
Razminia
, A.
, Baleanu
, D.
, and Johari Majd
, V.
, 2013
, “Conditional Optimization Problems: Fractional Order Case
,” J. Optim. Theory Appl.
, 156
(1
), pp. 45
–55
.17.
Tenreiro Machado
, J. A.
, 2010
, “Optimal Tuning of Fractional Controllers Using Genetic Algorithms
,” Nonlinear Dyn.
, 62
(1
), pp. 447
–452
.18.
Charef
, A.
, Assabaa
, M.
, Ladaci
, S.
, and Loiseau
, J. J.
, 2013
, “Fractional Order Adaptive Controller for Stabilised Systems Via High-Gain Feedback
,” IET Control Theory Appl.
, 7
(6
), pp. 822
–828
.19.
Ladaci
, S.
, and Charef
, A.
, 2006
, “On Fractional Adaptive Control
,” Nonlinear Dyn.
, 43
(4
), pp. 365
–378
.20.
Tenreiro Machado
, J. A.
, 2012
, “The Effect of Fractional Order in Variable Structure Control
,” Comput. Math. Appl.
, 64
(10
), pp. 3340
–3350
.21.
Efe
, M.
, 2012
, “Application of Backstepping Control Technique to Fractional Order Dynamic Systems
,” Fractional Dynamics and Control
, Springer
, New York, NY
, pp. 33
–47
.22.
Tenreiro Machado
, J. A.
, 1997
, “Analysis and Design of Fractional-Order Digital Control Systems
,” Syst. Anal. Model. Simul.
, 27
(2–3
), pp. 107
–122
.http://dl.acm.org/citation.cfm?id=255030.25503423.
Liao
, Z.
, Peng
, C.
, Li
, W.
, and Wang
, Y.
, 2011
, “Robust Stability Analysis for a Class of Fractional Order Systems With Uncertain Parameters
,” J. Franklin Inst.
, 348
(6
), pp. 1101
–1113
.24.
Lu
, J. G.
, and Chen
, G. R.
, 2009
, “Robust Stability and Stabilization of Fractional-Order Interval Systems: An LMI Approach
,” IEEE Trans. Autom. Control
, 54
(6
), pp. 1294
–1299
.25.
Lu
, J. G.
, and Chen
, Y. Q.
, 2010, “Robust Stability and Stabilization of Fractional-Order Interval Systems With the Fractional Order α: the 0<α<1 Case
,” IEEE Trans. Autom. Control
, 55
(1
), pp. 152
–158
.26.
Chevrie
, M.
, Sabatier
, J.
, Farges
, C.
, and Malti
, R.
, 2015
, “H2 Norm of a Class of Fractional Transfer Functions Suited for Modeling Diffusive Phenomena
,” American Control Conference
, Chicago, IL, pp. 2199
–2204
.27.
Yin
, C.
, Chen
, Y. Q.
, and Zhong
, S. M.
, 2014
, “Fractional-Order Sliding Mode Based Extremum Seeking Control of a Class of Nonlinear Systems
,” Automatica
, 50
(12
), pp. 3173
–3181
.28.
Binazadeh
, T.
, and Shafiei
, M. H.
, 2013
, “Output Tracking of Uncertain Fractional-Order Nonlinear Systems Via a Novel Fractional-Order Sliding Mode Approach
,” Mechatronics
, 23
(7
), pp. 888
–892
.29.
Bettayeb
, M.
, and Djennoune
, S.
, 2016
, “Design of Sliding Mode Controllers for Nonlinear Fractional-Order Systems Via Diffusive Representation
,” Nonlinear Dyn.
, 84
(2
), pp. 593
–605
.30.
Xu
, Y.
, Wang
, H.
, Liu
, D.
, and Huang
, H.
, 2015
, “Sliding Mode Control of a Class of Fractional Chaotic Systems in the Presence of Parameter Perturbations
,” J. Vib. Control
, 21
(3
), pp. 435
–448
.31.
Bijnan
, B.
, and Kamal
, S.
, 2015
, Stabilization and Control of Fractional Order Systems: A Sliding Mode Approach
, Springer
, Berlin
.32.
Dadras
, S.
, and Momeni
, H. R.
, 2014
, “Fractional Order Dynamic Output Feedback Sliding Mode Control Design for Robust Stabilization of Uncertain Fractional Nonlinear Systems
,” Asian J. Control
, 16
(2
), pp. 489
–497
.33.
Faieghi
, M. R.
, Delavari
, H.
, and Baleanu
, D.
, 2013
, “A Note on Stability of Sliding Mode Dynamics in Suppression of Fractional-Order Chaotic Systems
,” Comput. Math. Appl.
, 66
(5
), pp. 832
–837
.34.
Lim
, Y. H.
, Oh
, K. K. H.
, and Ahn
, S.
, 2013
, “Stability and Stabilization of Fractional-Order Linear Systems Subject to Input Saturation
,” IEEE Trans. Autom. Control
, 58
(4
), pp. 1062
–1067
.35.
Alaviyan Shahri
, E. S.
, Alfi
, A.
, and Tenreiro Machado
, J. A.
, 2015
, “An Extension of Estimation of Domain of Attraction for Fractional Order Linear System Subject to Saturation Control
,” Appl. Math. Lett.
, 47
, pp. 26
–34
.36.
Alaviyan Shahri
, E. S.
, and Balochian
, S.
, 2015
, “A Stability Analysis on Fractional Order Linear System With Nonlinear Saturated Disturbance
,” Natl Acad. Sci. Lett.
, 38
(5
), pp. 409
–413
.37.
Alaviyan Shahri
, E. S.
, and Balochian
, S.
, 2016
, “An Analysis and Design Method for Fractional-Order Linear Systems Subject to Actuator Saturation and Disturbance
,” Opt. Control Appl. Methods
, 37
(2
), pp. 305
–322
.Copyright © 2017 by ASME
You do not currently have access to this content.