In this work, we investigate both the mathematical and numerical studies of the fractional reaction–diffusion system consisting of spatial interactions of three components’ species. Our main result is based on the analysis of the model for linear stability. Mathematical analysis of the main equation shows that the dynamical system is both locally and globally asymptotically stable. We further propose a theorem which guarantees the existence and permanence of the three species. We formulate a viable numerical methods in space and time. By adopting the Fourier spectral approach to discretize in space, the issue of stiffness associated with the fractional-order spatial derivatives in such system is removed. The resulting system of ordinary differential equations (ODEs) is advanced with the exponential time-differencing method of ADAMS-type. The complexity of the dynamics in the system which we discussed theoretically are numerically presented through some numerical simulations in 1D, 2D, and 3D to address the points and queries that may naturally arise.

References

1.
Garvie
,
M.
,
2007
, “
Finite-Difference Schemes for Reaction-Diffusion Equations Modeling Predator-Pray Interactions in MATLAB
,”
Bull. Math. Biol.
,
69
(
3
), pp.
931
956
.
2.
Murray
,
J. D.
,
2003
, Mathematical Biology II: Spatial Models and Biomedical Applications,
Springer-Verlag
,
Berlin
.
3.
Chang
,
Y.
,
Feng
,
W.
,
Freeze
,
M.
, and
Lu
,
X.
,
2015
, “
Permanence and Coexistence in a Diffusive Complex Ratio-Dependent Food Chain
,”
Int. J. Dyn. Control
,
3
(
3
), pp.
262
274
.
4.
Holmes
,
W. R.
,
2014
, “
An Efficient, Nonlinear Stability Analysis for Detecting Pattern Formation in Reaction Diffusion Systems
,”
Bull. Math. Biol.
,
76
(
1
), pp.
157
183
.
5.
Yu
,
H.
,
Zhong
,
S.
,
Agarwal
,
R. P.
, and
Xiong
,
L.
,
2010
, “
Species Permanence and Dynamical Behavior Analysis of an Impulsively Controlled Ecological System With Distributed Time Delay
,”
Comput. Math. Appl.
,
59
(
12
), pp.
3824
3835
.
6.
Baleanu
,
D.
,
Golmankhaneh
,
A.
,
Nigmatullin
,
R.
, and
Golmankhaneh
,
A.
,
2010
, “
Fractional Newtonian Mechanics
,”
Open Phys.
,
8
, pp.
120
125
.
7.
Uchaikin
,
V. V.
,
2013
,
Fractional Derivatives for Physicists and Engineers
,
Springer
,
Berlin
.
8.
Bhrawy
,
A. H.
,
Zaky
,
M. A.
,
Baleanu
,
D.
, and
Abdelkawy
,
M. A.
,
2015
, “
A Novel Spectral Approximation for the Two-Dimensional Fractional Sub-Diffusion Problems
,”
Rom. J. Phys.
,
60
(
3–4
), pp.
344
359
.http://www.nipne.ro/rjp/2015_60_3-4/0344_0359.pdf
9.
Bhrawy
,
A. H.
,
Doha
,
E. H.
,
Baleanu
,
D.
, and
Ezz-eldein
,
S. S.
,
2015
, “
A Spectral Tau Algorithm Based on Jacobi Operational Matrix for Numerical Solution of Time Fractional Diffusion-Wave Equations
,”
J. Comput. Phys.
,
293
, pp.
142
156
.
10.
Bhrawy
,
A. H.
,
2016
, “
A Jacobi Spectral Collocation Method for Solving Multi-Dimensional Nonlinear Fractional Sub-Diffusion Equations
,”
Numer. Algorithms
,
73
(
1
), pp.
91
113
.
11.
Bhrawy
,
A. H.
,
2016
, “
A New Spectral Algorithm for a Time-Space Fractional Partial Differential Equations With Subdiffusion and Superdiffusion
,”
Proc. Rom. Acad. A
,
17
(
1
), pp.
39
47
.http://www.acad.ro/sectii2002/proceedings/doc2016-1/06-Bhrawy.pdf
12.
Owolabi
,
K. M.
, and
Atangana
,
A.
,
2016
, “
Numerical Solution of Fractional-In-Space Nonlinear Schrodinger Equation With the Riesz Fractional Derivative
,”
Eur. Phys. J. Plus
,
131
,
p
. 335.
13.
Bainov
,
D. D.
, and
Simeonov
,
P. C.
,
1993
,
Impulsive Differential Equations: Asymptotic Properties of the Solutions
,
World Scientific
,
Singapore
.
14.
Bhrawy
,
A. H.
,
2014
, “
An Efficient Jacobi Pseudospectral Approximation for Nonlinear Complex Generalized Zakharov System
,”
Appl. Math. Comput.
,
247
, pp.
30
46
.
15.
Doha
,
E. H.
,
Bhrawy
,
A. H.
,
Baleanu
,
D.
, and
Hafez
,
R. M.
,
2014
, “
A New Jacobi Rational-Gauss Collocation Method for Numerical Solution of Generalized Pantograph Equations
,”
Appl. Numer. Math.
,
77
, pp.
43
54
.
16.
Owolabi
,
K. M.
, and
Patidar
,
K. C.
,
2014
, “
Higher-Order Time-Stepping Methods for Time-Dependent Reaction-Diffusion Equations Arising in Biology
,”
Appl. Math. Comput.
,
240
, pp.
30
50
.
17.
Boyd
,
J. P.
,
2001
,
Chebyshev and Fourier Spectral Methods
,
Dover
,
Mineola, NY
.
18.
Kassam
,
A.
, and
Trefethen
,
L. N.
,
2005
, “
Fourth-Order Time-Stepping for Stiff PDEs
,”
SIAM J. Sci. Comput.
,
26
(
4
), pp.
1214
1233
.
19.
Owolabi
,
K. M.
, and
Patidar
,
K. C.
,
2016
, “
Numerical Simulations of Multicomponent Ecological Models With Adaptive Methods
,”
Theor. Biol. Med. Modell.
,
13
,
p
.
20.
Owolabi
,
K. M.
,
2017
, “
Robust and Adaptive Techniques for Numerical Simulation of Nonlinear Partial Differential Equations of Fractional Order
,”
Commun. Nonlinear Sci. Numer. Simul.
,
44
, pp.
304
317
.
21.
Cox
,
S. M.
, and
Matthews
,
P. C.
,
2002
, “
Exponential Time Differencing for Stiff Systems
,”
J. Comput. Phys.
,
176
(
2
), pp.
430
455
.
22.
Du
,
Q.
, and
Zhu
,
W.
,
2005
, “
Analysis and Applications of the Exponential Time Differencing Schemes and Their Contour Integration Modifications
,”
BIT Numer. Math.
,
45
(
2
), pp.
307
328
.
23.
Owolabi
,
K. M.
,
2015
, “
Robust IMEX Schemes for Solving Two-Dimensional Reaction-Diffusion Models
,”
Int. J. Nonlinear Sci. Numer. Simul.
,
16
(
6
), pp.
271
284
.
24.
Pindza
,
E.
, and
Owolabi
,
K. M.
,
2016
, “
Fourier Spectral Method for Higher Order Space Fractional Reaction-Diffusion Equations
,”
Commun. Nonlinear Sci. Numer. Simul.
,
40
, pp.
112
128
.
25.
Owolabi
,
K. M.
, and
Patidar
,
K. C.
,
2015
, “
Existence and Permanence in a Diffusive KiSS Model With Robust Numerical Simulations
,”
Int. J. Differ. Equations
,
2015
, p.
485860
.
You do not currently have access to this content.