Geometric methods have become increasingly accepted in computational multibody system (MBS) dynamics. This includes the kinematic and dynamic modeling as well as the time integration of the equations of motion. In particular, the observation that rigid body motions form a Lie group motivated the application of Lie group integration schemes, such as the Munthe-Kaas method. Also established vector space integration schemes tailored for structural and MBS dynamics were adopted to the Lie group setting, such as the generalized α integration method. Common to all is the use of coordinate mappings on the Lie group SE(3) of Euclidean motions. In terms of canonical coordinates (screw coordinates), this is the exponential mapping. Rigid body velocities (twists) are determined by its right-trivialized differential, denoted dexp. These concepts have, however, not yet been discussed in compact and concise form, which is the contribution of this paper with particular focus on the computational aspects. Rigid body motions can also be represented by dual quaternions, that form the Lie group Sp̂(1), and the corresponding dynamics formulations have recently found a renewed attention. The relevant coordinate mappings for dual quaternions are presented and related to the SE(3) representation. This relation gives rise to a novel closed form of the dexp mapping on SE(3). In addition to the canonical parameterization via the exponential mapping, the noncanonical parameterization via the Cayley mapping is presented.

References

1.
Selig
,
J. M.
,
2005
,
Geometric Fundamentals of Robotics
(Monographs in Computer Science Series),
Springer-Verlag
,
New York
.
2.
Shabana
,
A. A.
,
2013
,
Dynamics of Multibody Systems
, 4th ed., Cambridge University Press, New York.
3.
Müller
,
A.
,
2016
, “
A Note on the Motion Representation and Configuration Update in Time Stepping Schemes for the Constrained Rigid Body
,”
BIT Numer. Math.
,
56
(
3
), pp.
995
1015
.
4.
Celledoni
,
E.
, and
Owren
,
B.
,
1999
, “
Lie Group Methods for Rigid Body Dynamics and Time Integration on Manifolds
,”
Comput. Methods Appl. Mech. Eng.
,
192
(3–4), pp.
421
438
.
5.
Iserles
,
A.
,
Munthe-Kaas
,
H. Z.
,
Nørsett
,
S. P.
, and
Zanna
,
A.
,
2000
, “
Lie-Group Methods
,”
Acta Numer.
, Vol. 9, pp.
215
365
.
6.
Krysl
,
P.
, and
Endres
,
L.
,
2005
, “
Explicit Newmark/Verlet Algorithm for Time Integration of the Rotational Dynamics of Rigid Bodies
,”
Int. J. Numer. Methods Eng.
,
62
(
15
), pp.
2154
2177
.
7.
Munthe-Kaas
,
H.
,
1999
, “
High Order Runge–Kutta Methods on Manifolds
,”
Appl. Numer. Math.
,
29
(
1
), pp.
115
127
.
8.
Owren
,
B.
, and
Marthinsen
,
A.
,
1999
, “
Runge–Kutta Methods Adapted to Manifolds and Based on Rigid Frames
,”
BIT
,
39
(
1
), pp.
116
142
.
9.
Park
,
J.
, and
Chung
,
W. K.
,
2005
, “
Geometric Integration on Euclidean Group With Application to Articulated Multibody Systems
,”
IEEE Trans. Rob. Autom.
,
21
(
5
), pp.
850
863
.
10.
Simo
,
J. C.
, and
Wong
,
K. K.
,
1991
, “
Unconditionally Stable Algorithms for Rigid Body Dynamics That Exactly Preserve Energy and Momentum
,”
Int. J. Numer. Methods Eng.
,
31
(
1
), pp.
19
52
.
11.
Terze
,
Z.
,
Müller
,
A.
, and
Zlatar
,
D.
,
2014
, “
Lie-Group Integration Method for Constrained Multibody Systems in State Space
,”
Multibody Syst. Dyn.
,
34
(
3
), pp.
275
305
.
12.
Terze
,
Z.
,
Müller
,
A.
, and
Zlatar
,
D.
,
2015
, “
An Angular Momentum and Energy Conserving Lie-Group Integration Scheme for Rigid Body Rotational Dynamics Originating From Störmer-Verlet Algorithm
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051005
.
13.
Darboux
,
G.
,
1887
,
Leçons sur la théorie générale des surfaces et les applications géométriques du calcul infinitesimal
, Vol. 4, Gautiers-Villars,
Paris, France
.
14.
Sattinger
,
D. H.
, and
Weaver
,
O. L.
,
1993
,
Lie Groups and Algebras With Applications to Physics, Geometry and Mechanics
,
Springer
, New York.
15.
Marsden
,
J.
,
1997
,
Introduction to Mechanics and Symmetry
,
Springer-Verlag
, New York.
16.
Brüls
,
O.
,
Cardona
,
A.
, and
Arnold
,
M.
,
2012
, “
Lie Group Generalized-Alpha Time Integration of Constrained Flexible Multibody Systems
,”
Mech. Mach. Theory
,
48
, pp.
121
137
.
17.
Müller
,
A.
, and
Terze
,
Z.
,
2014
, “
The Significance of the Configuration Space Lie Group for the Constraint Satisfaction in Numerical Time Integration of Multibody Systems
,”
Mech. Mach. Theory
,
82
, pp.
173
202
.
18.
Altmann
,
S. L.
,
1986
,
Rotations, Quaternions, and Double Groups
,
Oxford University Press
, New York.
19.
Borri
,
M.
,
Mello
,
F.
, and
Atluri
,
S. N.
,
1990
, “
Variational Approaches for Dynamics and Time-Finite-Elements: Numerical Studies
,”
Comput. Mech.
,
7
(
1
), pp.
49
76
.
20.
McCarthy
,
J. M.
,
1990
,
Introduction to Theoretical Kinematics
,
The MIT Press
,
Cambridge, MA
.
21.
Géradin
,
M.
, and
Rixen
,
D.
,
1995
, “
Parametrization of Finite Rotations in Computational Dynamics: A Review
,”
Rev. Eur. Élém.
,
4
(
5–6
), pp.
497
553
.
22.
Veldkamp
,
G. R.
,
1976
, “
On the Use of Dual Numbers, Vectors and Matrices in Instantaneous, Spatial Kinematics
,”
Mech. Mach. Theory
,
11
(
2
), pp.
141
156
.
23.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
1993
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
, Boca Raton, FL.
24.
Helgason
,
S.
,
1978
,
Differential Geometry, Lie Groups, and Symmetric Spaces
,
Academic Press
,
San Diego, CA.
25.
Betsch
,
P.
, and
Siebert
,
R.
,
2009
, “
Rigid Body Dynamics in Terms of Quaternions: Hamiltonian Formulation and Conserving Numerical Integration
,”
Int. J. Numer. Methods Eng.
,
79
(
4
), pp.
444
473
.
26.
Siminovitch
,
D.
,
1997
, “
Rotations in NMR: Part I. Euler–Rodrigues Parameter and Quaternions
,”
Concepts Magn. Reson.
,
9
(
3
), pp.
149
171
.
27.
Müller
,
A.
,
2010
, “
Group Theoretical Approaches to Vector Parameterization of Rotations
,”
J. Geom. Symmetry Phys.
,
19
, pp.
43
72
.
28.
Tsiotras
,
P.
,
Junkins
,
J.
, and
Schaub
,
H.
,
1997
, “
Higher Order Cayley Transforms With Applications to Attitude Representations
,”
J. Guid., Control, Dyn.
,
20
(
3
), pp.
528
534
.
29.
Milenkovic
,
V.
,
1982
, “
Coordinates Suitable for Angular Motion Synthesis in Robots
,”
Robot VI Conference
, Detroit, MI, Society of Manufacturing Engineers, Dearborn, MI, Mar. 2–4, pp. 407–420.
30.
Bauchau
,
O. A.
, and
Trainelli
,
L.
,
2003
, “
The Vectorial Parameterization of Rotation
,”
Nonlinear Dyn.
,
32
(
1
), pp.
71
92
.
31.
Bauchau
,
O. A.
,
2011
,
Flexible Multibody Dynamics
,
Springer
, Dortrecht, Heidelberg, New York.
32.
Schaub
,
H.
, and
Junkins
,
J. L.
,
1995
, “
Stereographic Orientation Parameters for Attitude Dynamics: A Generalization of the Rodrigues Parameters
,”
J. Aeronautical Sci.
,
44
(1), pp. 1–19.
33.
Magnus
,
W.
,
1954
, “
On the Exponential Solution of Differential Equations for a Linear Operator
,”
Commun. Pure Appl. Math.
,
7
(
4
), pp.
649
673
.
34.
Ibrahimbegović
,
A.
,
Frey
,
F.
, and
Kožar
,
I.
,
1995
, “
Computational Aspects of Vector-Like Parametrization of Three-Dimensional Finite Rotations
,”
Int. J. Numer. Methods Eng.
,
38
(
21
), pp.
3653
3673
.
35.
Andrle
,
M. S.
, and
Crassidis
,
J. L.
,
2013
, “
Geometric Integration of Quaternions
,”
J. Guid., Control, Dyn.
,
36
(
6
), pp.
1762
1767
.
36.
Terze
,
Z.
,
Müller
,
A.
, and
Zlatar
,
D.
,
2016
, “
Singularity-Free Time Integration of Rotational Quaternions Using Non-Redundant Ordinary Differential Equations
,”
Multibody Syst. Dyn.
,
37
(
3
), pp.
1
25
.
37.
Selig
,
J. M.
,
2007
, “
Cayley Maps for SE(3)
,” 12th
IFToMM
World Congress, Besancon, France, June 18–21.
38.
Brodsky
,
V.
, and
Shoham
,
M.
,
1999
, “
Dual Numbers Representation of Rigid Body Dynamics
,”
Mech. Mach. Theory
,
34
(
5
), pp.
693
718
.
39.
Cohen
,
A.
, and
Shoham
,
M.
,
2015
, “
Application of Hyper-Dual Numbers to Multibody Kinematics
,”
ASME J. Mech. Rob.
,
8
(
1
), p. 011015.
40.
Dimentberg
,
F. M.
,
1965
,
The Screw Calculus and Its Application in Mechanics
,
Nauka
,
Moscow
(Clearinghouse for Federal and Scientific Technical Information), Russia.
41.
Rico Martinez
,
J. M.
, and
Duffy
,
J.
,
1993
, “
The Principle of Transference: History, Statement and Proof
,”
Mech. Mach. Theory
,
28
(
1
), pp.
165
177
.
42.
Rooney
,
J.
,
1975
, “
On the Principle of Transference
,”
Fourth World Congress on the Theory of Machines and Mechanisms
, Newcastle upon Tyne, England, Sept., pp.
1089
1094
.
43.
Husty
,
M.
, and
Schröcker
,
H.-P.
,
2010
, “
Algebraic Geometry and Kinematics
,”
Nonlinear Computational Geometry
, (The IMA Volumes in Mathematics and Its Applications, Vol. 151), Springer, New York, pp.
85
107
.
44.
Bauchau
,
O. A.
, and
Choi
,
J. Y.
,
2003
, “
The Vector Parameterization of Motion
,”
Nonlinear Dyn.
,
33
(
2
), pp.
165
188
.
You do not currently have access to this content.