Since the absolute nodal coordinate formulation (ANCF) was introduced, a large number of fully parametrized and gradient deficient finite elements were developed. Some of the finite elements (FE) proposed do not fall into the ANCF category, and for this reason, this technical brief describes the general requirements for ANCF finite elements. As discussed in this paper, some of the conventional isoparametric finite elements can describe arbitrary rigid body displacements and can be used with a nonincremental solution procedure. Nonetheless, these isoparametric elements, particularly the ones that employ position coordinates only, are of the C0 type and do not ensure the continuity of the position vector gradients. It is also shown that the position vector gradient continuity conditions can be described using homogeneous algebraic equations, and such conditions are different from those conditions that govern the displacement vector gradients. The use of the displacement vector gradients as nodal coordinates does not allow for an isoparametric representation that accounts for both the initial geometry and displacements using one kinematic description, can make the element assembly more difficult, and can complicate imposing linear algebraic constraint equations at a preprocessing stage. Understanding the ANCF geometric description will allow for the development of new mechanics-based computer-aided design (CAD)/analysis systems as briefly discussed in this paper.

References

1.
Ding
,
J.
,
Wallin
,
M.
,
Wei
,
C.
,
Recuero
,
A. M.
, and
Shabana
,
A. A.
,
2014
, “
Use of Independent Rotation Field in the Large Displacement Analysis of Beams
,”
Nonlinear Dyn.
,
76
(
3
), pp.
1829
1843
.10.1007/s11071-014-1252-1
2.
Dombrowski
,
S. V.
,
2002
, “
Analysis of Large Flexible Body Deformation in Multibody Systems Using Absolute Coordinates
,”
Multibody Syst. Dyn.
,
8
(
4
), pp.
409
432
.10.1023/A:1021158911536
3.
Kübler
,
L.
,
Eberhard
,
P.
, and
Geisler
,
J.
,
2003
, “
Flexible Multibody Systems With Large Deformations Using Absolute Nodal Coordinates for Isoparametric Solid Brick Elements
,”
ASME
Paper No. DETC2003/VIB-48303. 10.1115/DETC2003/VIB-48303
4.
Shabana
,
A. A.
,
2012
,
Computational Continuum Mechanics
, 2nd ed.,
Cambridge University
,
Cambridge
.10.1017/CBO9781139059992
5.
Betsch
,
P.
, and
Stein
,
E.
,
1995
, “
An Assumed Strain Approach Avoiding Artificial Thickness Straining for a Non-Linear 4-Node Shell Element
,”
Commun. Numer. Methods Eng.
,
11
(
11
), pp.
899
909
.10.1002/cnm.1640111104
6.
Milner
,
H. R.
,
1981
, “
Accurate Finite Element Analysis of Large Displacements in Skeletal Frames
,”
Comput. Struct.
,
14
(
3–4
), pp.
205
210
.10.1016/0045-7949(81)90005-5
7.
Betsch
,
P.
, and
Stein
,
E.
,
1996
, “
A Nonlinear Extensible 4-Node Shell Element Based on Continuum Theory and Assumed Strain Interpolations
,”
Nonlinear Sci.
,
6
(
2
), pp.
169
199
.10.1007/BF02434053
8.
Shabana
,
A. A.
, and
Mikkola
,
A. M.
,
2003
, “
Use of the Finite Element Absolute Nodal Coordinate Formulation in Modeling Slope Discontinuity
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
342
350
.10.1115/1.1564569
9.
Shabana
,
A. A.
,
1998
,
Dynamics of Multibody Systems
, 2nd ed.,
Cambridge University
,
Cambridge
.
10.
Shabana
,
A. A.
,
2015
, “
ANCF Tire Assembly Model for Multibody System Applications
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
024504
.10.1115/1.4028479
11.
Patel
,
M.
,
Orzechowski
,
G.
,
Tian
,
Q.
, and
Shabana
,
A. A.
, “
A New MBS Approach for Tire Modeling Using ANCF Finite Elements
,”
Proc. Inst. Mech. Eng., Part K
(published online).10.1177/1464419315574641
12.
Hamed
,
A. M.
,
Jayakumar
,
P.
,
Letherwood
,
M. D.
,
Gorsich
,
D. J.
,
Recuero
,
A. M.
, and
Shabana
,
A. A.
,
2015
, “
Ideal Compliant Joints and Integration of Computer Aided Design and Analysis
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
021015
.10.1115/1.4027999
13.
Yu
,
Z.
,
Liu
,
Y.
,
Tinsley
,
B.
, and
Shabana
,
A. A.
,
2015
, “
Integration of Geometry and Analysis for Vehicle System Applications: Continuum-Based Leaf Spring and Tire Assembly
,”
IMechE J. Multibody Dyn.
(in review).
You do not currently have access to this content.