In this paper, we used improved (G'/G)-expansion method to reach the solutions for some nonlinear time-fractional partial differential equations (fPDE). The fPDE is reduced to an ordinary differential equation (ODE) by means of Riemann–Liouille derivative and a basic variable transformation. Various types of functions are obtained for the time-fractional biological population model (fBPM) and Cahn–Hilliard (fCH) equation.

References

1.
Hereman
,
W.
,
Banerjee
,
P. P.
,
Korpel
,
A.
,
Assanto
,
G.
,
van Immerzeele
,
A.
, and
Meerpoel
,
A.
,
1986
, “
Exact Solitary Wave Solutions of Nonlinear Evolution and Wave Equations Using a Direct Algebraic Method
,”
J. Phys. A
,
19
(
5
), pp.
607
628
.10.1088/0305-4470/19/5/016
2.
Wang
,
D.-S.
,
2010
, “
Complete Integrability and the Miura Transformation of a Coupled KdV Equation
,”
Appl. Math. Lett.
,
23
(
6
), pp.
665
669
.10.1016/j.aml.2010.02.002
3.
Geng
,
X.
, and
He
,
G.
,
2010
, “
Darboux Transformation and Explicit Solutions for the Satsuma–Hirota Coupled Equation
,”
Appl. Math. Comput.
,
216
(
9
), pp.
2628
2634
.10.1016/j.amc.2010.03.107
4.
Cesar
,
A.
,
Gómez
,
S.
, and
Alvaro
,
H. S.
,
2008
, “
The Cole–Hopf Transformation and Improved tanh–coth Method Applied to New Integrable System (KdV6)
,”
Appl. Math. Comput.
,
204
(
2
), pp.
957
962
.10.1016/j.amc.2008.08.006
5.
Lei
,
Y.
,
Fajiang
,
Z.
, and
Yinghai
,
W.
,
2002
, “
The Homogeneous Balance Method, Lax Pair, Hirota Transformation and a General Fifth-Order KdV Equation
,”
Chaos, Solitons Fractals
,
13
(
2
), pp.
337
340
.10.1016/S0960-0779(00)00274-5
6.
Wang
,
M. L.
, and
Wang
,
Y. M.
,
2001
, “
A New Bäcklund Transformation and Multi-Soliton Solutions to the KdV Equation With General Variable Coefficients
,”
Phys. Lett. A
,
287
(
3–4
), pp.
211
216
.10.1016/S0375-9601(01)00487-X
7.
Taşcan
,
F.
, and
Bekir
,
A.
,
2009
, “
Analytic Solutions of the (2 + 1)-Dimensional Nonlinear Evolution Equations Using the Sine–Cosine Method
,”
Appl. Math. Comput.
,
215
(
8
), pp.
3134
3139
.10.1016/j.amc.2009.09.027
8.
Wang
,
M. L.
,
Zhou
,
Y. B.
, and
Li
,
Z. B.
,
1996
, “
Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Equations in Mathematical Physics
,”
Phys. Lett. A
,
216
(
1–5
), pp.
67
75
.10.1016/0375-9601(96)00283-6
9.
Fan
,
E. G.
,
2002
, “
Auto-Bäcklund Transformation and Similarity Reductions for General Variable Coefficient KdV Equations
,”
Phys. Lett. A
,
294
(
1
), pp.
26
30
.10.1016/S0375-9601(02)00033-6
10.
Baleanu
,
D.
,
Hakimeh
,
M.
, and
Shahram
,
R.
,
2013
, “
On a Nonlinear Fractional Differential Equation on Partially Ordered Metric Spaces
,”
Adv. Differ. Equations
, 2013, p. 83.10.1186/1687-1847-2013-83
11.
Abdelouahab
,
K.
, and
Baleanu
,
D.
,
2011
, “
Homotopy Perturbation Method for the Coupled Fractional Lotka–Volterra Equations
,”
Rom. J. Phys.
,
56
(
3–4
), pp.
333
338
.
12.
Yang
,
X. J.
,
Baleanu
,
D.
, and
Zhong
,
W. P.
,
2013
, “
Approximate Solutions for Diffusion Equations on Cantor Space–Time
,”
Proc. Rom. Acad. Ser. A
,
14
(
2
), pp.
127
133
.
13.
Biswas
,
A.
,
Bhrawy
,
A. H.
,
Abdelkawy
,
M. A.
,
Alshaery
,
A. A.
, and
Hilal
,
E. M.
,
2014
, “
Symbolic Computation of Some Nonlinear Fractional Differential Equations
,”
Rom. J. Phys.
,
59
(
5–6
), pp.
433
442
.
14.
Meng
,
F.
,
2013
, “
A New Approach for Solving Fractional Partial Differential Equations
,”
J. Appl. Math.
,
2013
, p.
256823
.
15.
Jafari
,
H.
,
Tajadodi
,
H.
,
Kadkhoda
,
N.
, and
Baleanu
,
D.
,
2013
, “
Fractional Subequation Method for Cahn–Hilliard and Klein–Gordon Equations
,”
Abstr. Appl. Anal.
,
2013
, p.
587179
.10.1155/2013/587179
16.
Li
,
Z.
,
Liu
,
X.
, and
Zhang
,
W.
,
2012
, “
Application of Improved (G′/G)-expansion Method to Traveling Wave Solutions of Two Nonlinear Evolution Equations
,”
Adv. Appl. Math. Mech.
,
4
(
1
), pp.
122
131
.
17.
Jumarie
,
G.
,
2006
, “
Modified Riemann–Liouville Derivative and Fractional Taylor Series of Non-Differentiable Functions Further Results
,”
Comput. Math. Appl.
,
51
(
9–10
), pp.
1367
1376
.10.1016/j.camwa.2006.02.001
18.
Jumarie
,
G.
,
2007
, “
Fractional Hamilton–Jacobi Equation for the Optimal Control of Nonrandom Fractional Dynamics With Fractional Cost Function
,”
Appl. Math. Comput.
,
23
(
1–2
), pp.
215
228
.
19.
Jumarie
,
G.
,
2009
, “
Table of Some Basic Fractional Calculus Formulae Derived From a Modified Riemann–Liouville Derivative for Non-Differentiable Functions
,”
Appl. Math. Lett.
,
22
(
3
), pp.
378
385
.10.1016/j.aml.2008.06.003
20.
Lu
,
Y. G.
,
2000
, “
Hölder Estimates of Solutions of Biological Population Equations
,”
Appl. Math. Lett.
,
13
(
6
), pp.
123
126
.10.1016/S0893-9659(00)00066-5
21.
Gurtin
,
M.
, and
MacCamy
,
R. C.
,
1977
, “
On the Diffusion of Biological Populations
,”
Math. Biosci.
,
33
(
1–2
), pp.
35
49
.10.1016/0025-5564(77)90062-1
22.
Bear
,
J.
,
1972
,
Dynamics of Fluids in Porous Media
,
American Elsevier
,
New York
.
23.
Li
,
Z. B.
, and
He
,
J. H.
,
2012
, “
Converting Fractional Differential Equations Into Partial Differential Equations
,”
Therm. Sci.
,
16
(
2
), pp.
331
334
.10.2298/TSCI110503068H
24.
He
,
J. H.
, and
Li
,
Z. B.
,
2011
, “
Application of the Fractional Complex Transform to Fractional Differential Equations
,”
Nonlinear Sci. Lett. A
,
2
(
3
), pp.
121
126
.
25.
El-Sayed
,
A. M. A.
,
Rida
,
S. Z.
, and
Arafa
,
A. A. M.
,
2009
, “
Exact Solutions of Fractional-Order Biological Population Model
,”
Commun. Theor. Phys.
,
52
(
6
), pp.
992
996
.10.1088/0253-6102/52/6/04
26.
Zhang
,
S.
, and
Zhang
,
H. Q.
,
2011
, “
Fractional Sub-Equation Method and Its Applications to Nonlinear Fractional PDEs
,”
Phys. Lett. A
,
375
(
7
), pp.
1069
1073
.10.1016/j.physleta.2011.01.029
27.
Shakeri
,
F.
, and
Dehghan
,
M.
,
2007
, “
Numerical Solution of a Biological Population Model Using He's Variational Iteration Method
,”
Comput. Math. Appl.
,
54
(
7–8
), pp.
1197
1209
.10.1016/j.camwa.2006.12.076
28.
Devendra
,
K.
, and
Jagdev
,
S. S.
,
2013
, “
Application of Homotopy Analysis Transform Method to Fractional Biological Population Model
,”
Rom. Rep. Phys.
,
65
(
1
), pp.
63
75
.
29.
Ugurlu
,
Y.
, and
Kaya
,
D.
,
2008
, “
Solutions of the Cahn–Hilliard Equation
,”
Comput. Math. Appl.
,
56
(
12
), pp.
3038
3045
.10.1016/j.camwa.2008.07.007
30.
Dahmani
,
Z.
, and
Benbachir
,
M.
,
2009
, “
Solutions of the Cahn–Hilliard Equation With Time- and Space-Fractional Derivatives
,”
Int. J. Nonlinear Sci.
,
8
(
1
), pp.
19
26
.
You do not currently have access to this content.