In this paper, we used improved -expansion method to reach the solutions for some nonlinear time-fractional partial differential equations (fPDE). The fPDE is reduced to an ordinary differential equation (ODE) by means of Riemann–Liouille derivative and a basic variable transformation. Various types of functions are obtained for the time-fractional biological population model (fBPM) and Cahn–Hilliard (fCH) equation.
Issue Section:
Research Papers
References
1.
Hereman
, W.
, Banerjee
, P. P.
, Korpel
, A.
, Assanto
, G.
, van Immerzeele
, A.
, and Meerpoel
, A.
, 1986
, “Exact Solitary Wave Solutions of Nonlinear Evolution and Wave Equations Using a Direct Algebraic Method
,” J. Phys. A
, 19
(5
), pp. 607
–628
.10.1088/0305-4470/19/5/0162.
Wang
, D.-S.
, 2010
, “Complete Integrability and the Miura Transformation of a Coupled KdV Equation
,” Appl. Math. Lett.
, 23
(6
), pp. 665
–669
.10.1016/j.aml.2010.02.0023.
Geng
, X.
, and He
, G.
, 2010
, “Darboux Transformation and Explicit Solutions for the Satsuma–Hirota Coupled Equation
,” Appl. Math. Comput.
, 216
(9
), pp. 2628
–2634
.10.1016/j.amc.2010.03.1074.
Cesar
, A.
, Gómez
, S.
, and Alvaro
, H. S.
, 2008
, “The Cole–Hopf Transformation and Improved tanh–coth Method Applied to New Integrable System (KdV6)
,” Appl. Math. Comput.
, 204
(2
), pp. 957
–962
.10.1016/j.amc.2008.08.0065.
Lei
, Y.
, Fajiang
, Z.
, and Yinghai
, W.
, 2002
, “The Homogeneous Balance Method, Lax Pair, Hirota Transformation and a General Fifth-Order KdV Equation
,” Chaos, Solitons Fractals
, 13
(2
), pp. 337
–340
.10.1016/S0960-0779(00)00274-56.
Wang
, M. L.
, and Wang
, Y. M.
, 2001
, “A New Bäcklund Transformation and Multi-Soliton Solutions to the KdV Equation With General Variable Coefficients
,” Phys. Lett. A
, 287
(3–4
), pp. 211
–216
.10.1016/S0375-9601(01)00487-X7.
Taşcan
, F.
, and Bekir
, A.
, 2009
, “Analytic Solutions of the (2 + 1)-Dimensional Nonlinear Evolution Equations Using the Sine–Cosine Method
,” Appl. Math. Comput.
, 215
(8
), pp. 3134
–3139
.10.1016/j.amc.2009.09.0278.
Wang
, M. L.
, Zhou
, Y. B.
, and Li
, Z. B.
, 1996
, “Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Equations in Mathematical Physics
,” Phys. Lett. A
, 216
(1–5
), pp. 67
–75
.10.1016/0375-9601(96)00283-69.
Fan
, E. G.
, 2002
, “Auto-Bäcklund Transformation and Similarity Reductions for General Variable Coefficient KdV Equations
,” Phys. Lett. A
, 294
(1
), pp. 26
–30
.10.1016/S0375-9601(02)00033-610.
Baleanu
, D.
, Hakimeh
, M.
, and Shahram
, R.
, 2013
, “On a Nonlinear Fractional Differential Equation on Partially Ordered Metric Spaces
,” Adv. Differ. Equations
, 2013, p. 83.10.1186/1687-1847-2013-8311.
Abdelouahab
, K.
, and Baleanu
, D.
, 2011
, “Homotopy Perturbation Method for the Coupled Fractional Lotka–Volterra Equations
,” Rom. J. Phys.
, 56
(3–4
), pp. 333
–338
.12.
Yang
, X. J.
, Baleanu
, D.
, and Zhong
, W. P.
, 2013
, “Approximate Solutions for Diffusion Equations on Cantor Space–Time
,” Proc. Rom. Acad. Ser. A
, 14
(2
), pp. 127
–133
.13.
Biswas
, A.
, Bhrawy
, A. H.
, Abdelkawy
, M. A.
, Alshaery
, A. A.
, and Hilal
, E. M.
, 2014
, “Symbolic Computation of Some Nonlinear Fractional Differential Equations
,” Rom. J. Phys.
, 59
(5–6
), pp. 433
–442
.14.
Meng
, F.
, 2013
, “A New Approach for Solving Fractional Partial Differential Equations
,” J. Appl. Math.
, 2013
, p. 256823
.15.
Jafari
, H.
, Tajadodi
, H.
, Kadkhoda
, N.
, and Baleanu
, D.
, 2013
, “Fractional Subequation Method for Cahn–Hilliard and Klein–Gordon Equations
,” Abstr. Appl. Anal.
, 2013
, p. 587179
.10.1155/2013/58717916.
Li
, Z.
, Liu
, X.
, and Zhang
, W.
, 2012
, “Application of Improved (G′/G)-expansion Method to Traveling Wave Solutions of Two Nonlinear Evolution Equations
,” Adv. Appl. Math. Mech.
, 4
(1
), pp. 122
–131
.17.
Jumarie
, G.
, 2006
, “Modified Riemann–Liouville Derivative and Fractional Taylor Series of Non-Differentiable Functions Further Results
,” Comput. Math. Appl.
, 51
(9–10
), pp. 1367
–1376
.10.1016/j.camwa.2006.02.00118.
Jumarie
, G.
, 2007
, “Fractional Hamilton–Jacobi Equation for the Optimal Control of Nonrandom Fractional Dynamics With Fractional Cost Function
,” Appl. Math. Comput.
, 23
(1–2
), pp. 215
–228
.19.
Jumarie
, G.
, 2009
, “Table of Some Basic Fractional Calculus Formulae Derived From a Modified Riemann–Liouville Derivative for Non-Differentiable Functions
,” Appl. Math. Lett.
, 22
(3
), pp. 378
–385
.10.1016/j.aml.2008.06.00320.
Lu
, Y. G.
, 2000
, “Hölder Estimates of Solutions of Biological Population Equations
,” Appl. Math. Lett.
, 13
(6
), pp. 123
–126
.10.1016/S0893-9659(00)00066-521.
Gurtin
, M.
, and MacCamy
, R. C.
, 1977
, “On the Diffusion of Biological Populations
,” Math. Biosci.
, 33
(1–2
), pp. 35
–49
.10.1016/0025-5564(77)90062-122.
Bear
, J.
, 1972
, Dynamics of Fluids in Porous Media
, American Elsevier
, New York
.23.
Li
, Z. B.
, and He
, J. H.
, 2012
, “Converting Fractional Differential Equations Into Partial Differential Equations
,” Therm. Sci.
, 16
(2
), pp. 331
–334
.10.2298/TSCI110503068H24.
He
, J. H.
, and Li
, Z. B.
, 2011
, “Application of the Fractional Complex Transform to Fractional Differential Equations
,” Nonlinear Sci. Lett. A
, 2
(3
), pp. 121
–126
.25.
El-Sayed
, A. M. A.
, Rida
, S. Z.
, and Arafa
, A. A. M.
, 2009
, “Exact Solutions of Fractional-Order Biological Population Model
,” Commun. Theor. Phys.
, 52
(6
), pp. 992
–996
.10.1088/0253-6102/52/6/0426.
Zhang
, S.
, and Zhang
, H. Q.
, 2011
, “Fractional Sub-Equation Method and Its Applications to Nonlinear Fractional PDEs
,” Phys. Lett. A
, 375
(7
), pp. 1069
–1073
.10.1016/j.physleta.2011.01.02927.
Shakeri
, F.
, and Dehghan
, M.
, 2007
, “Numerical Solution of a Biological Population Model Using He's Variational Iteration Method
,” Comput. Math. Appl.
, 54
(7–8
), pp. 1197
–1209
.10.1016/j.camwa.2006.12.07628.
Devendra
, K.
, and Jagdev
, S. S.
, 2013
, “Application of Homotopy Analysis Transform Method to Fractional Biological Population Model
,” Rom. Rep. Phys.
, 65
(1
), pp. 63
–75
.29.
Ugurlu
, Y.
, and Kaya
, D.
, 2008
, “Solutions of the Cahn–Hilliard Equation
,” Comput. Math. Appl.
, 56
(12
), pp. 3038
–3045
.10.1016/j.camwa.2008.07.00730.
Dahmani
, Z.
, and Benbachir
, M.
, 2009
, “Solutions of the Cahn–Hilliard Equation With Time- and Space-Fractional Derivatives
,” Int. J. Nonlinear Sci.
, 8
(1
), pp. 19
–26
.Copyright © 2015 by ASME
You do not currently have access to this content.