Microelectromechanical system (MEMS) and Nanoelectromechanical system (NEMS) are mostly actuated by direct forcing due to electrostatic excitation. In general, the electrostatic forcing consists of two main components, the first is the direct forcing which is based on parallel plate capacitance and another is due to the fringing effects. As the size of the beam and its cross section reduces from microscale to nanoscale, the effect of direct forcing diminishes because the overlapping area also reduces. Consequently, the fringing force effect remains the only viable factor to excite the beams electrostatically. In this paper, we present the nonlinear analysis of fixed–fixed and cantilever beams subjected to the direct force excitation, the fringing force excitation, and the combined effect of direct and fringing forces. In the present configuration, while the direct forcing is achieved by applying voltage across the beam and the bottom electrode, the fringing force can be introduced by applying voltage across the beam and the symmetrically placed side electrodes. To do the analysis, we first formulate the equation of motion considering both kinds of forces. Subsequently, we apply the method of multiple scale, MMS, to obtain the approximate solution. After validating MMS with the numerical simulation, we discuss the influence of large excitation amplitude, nonlinear damping, and the nonlinear stiffness under different forcing conditions. We found that fringing force introduces parametric excitation in the system which may be used to significantly increase the response amplitude as well as frequency bandwidth. It is also found that under the influence of the fringing forces from the side electrodes, the pull-in effect can be improved. Furthermore, the present study can be used to increase the sensitivity as well as the operating frequency range of different MEMS and NEMS based sensors under combined forcing conditions.

References

1.
Adrega
,
T.
,
Prazeres
,
D. M. F.
,
Chu
,
V.
, and
Conde
,
J. P.
,
2006
, “
Thin-Film Silicon MEMS DNA Sensors
,”
J. Non-Cryst. Solids
,
352
(
9–20
), pp.
1999
2003
.10.1016/j.jnoncrysol.2006.01.079
2.
Ekinci
,
K. L.
,
Huang
,
X. M. H.
, and
Roukes
,
M. L.
,
2004
, “
Ultrasensitive Nanoelectromechanical Mass Detection
,”
Appl. Phys. Lett.
,
84
(
22
), pp.
4469
4471
.10.1063/1.1755417
3.
Schoebel
,
J.
,
Buck
,
T.
,
Reimann
,
M.
,
Ulm
,
M.
,
Schneider
,
M.
,
Jourdain
,
A.
,
Carchon
,
G. J.
, and
Tilmans
,
H. A.
,
2005
, “
Design Considerations and Technology Assessment of Phased-Array Antenna Systems With RF MEMS for Automotive Radar Applications
,”
IEEE Trans. Microwave Theory Tech.
,
53
(
6
), pp.
1968
1975
.10.1109/TMTT.2005.848838
4.
Badri
,
A. E.
,
Sinha
,
J. K.
, and
Albarbar
,
A.
,
2010
, “
A Typical Filter Design to Improve the Measured Signals From MEMS Accelerometer
,”
Measurement
,
43
(
10
), pp.
1425
1430
.10.1016/j.measurement.2010.08.011
5.
Blaschke
,
M.
,
Tille
,
T.
,
Robertson
,
P.
,
Mair
,
S.
,
Weimar
,
U.
, and
Ulmer
,
H.
,
2006
, “
MEMS Gas-Sensor Array for Monitoring the Perceived Car-Cabin Air Quality
,”
IEEE Sens. J.
,
6
(
5
), pp.
1298
1308
.10.1109/JSEN.2006.881399
6.
Vishwakarma
,
S. D.
,
Pandey
,
A. K.
,
Parpia
,
J. M.
,
Southworth
,
D. R.
,
Craighead
,
H. G.
, and
Pratap
,
R.
,
2013
, “
Evaluation of Mode Dependent Fluid Damping in a High Frequency Drumhead Microresonator
,”
IEEE J. Microelectromech. Syst.
,
23
(
2
), pp.
334
346
.10.1109/JMEMS.2013.2273803
7.
Badzey
,
R. L.
,
Zolfagharkani
,
G.
,
Gaidarzhy
,
G.
, and
Mohanty
,
G.
,
2005
, “
Temperature Dependence of a Nanomechanical Switch
,”
Appl. Phys. Lett.
,
86
(
2
), p.
023106
.10.1063/1.1849848
8.
Pandey
,
A. K.
,
Gottlieb
,
O.
,
Shtempluck
,
O.
, and
Buks
,
E.
,
2010
, “
Performance of an AuPd Micromechanical Resonator as a Temperature Sensor
,”
Appl. Phys. Lett.
,
96
(
20
), p.
203105
.10.1063/1.3431614
9.
Pamidighantam
,
S.
,
Puers
,
R.
,
Baert
,
K.
, and
Tilmans
,
H.
,
2002
, “
Pull-In Voltage Analysis of Electrostatically Actuated Beam Structures With Fixed–Fixed and Fixed–Free End Conditions
,”
J. Micromech. Microeng.
,
12
(
4
), pp.
458
464
.10.1088/0960-1317/12/4/319
10.
Nayfeh
,
A. H.
,
Younis
,
M. I.
, and
Abdel-Rahman
,
E. M.
,
2007
, “
Dynamic Pull-In Phenomenon in MEMS Resonators
,”
Nonlinear Dyn.
,
48
(
1–2
), pp.
153
163
.10.1007/s11071-006-9079-z
11.
Dumitru
,
I. C.
,
Israel
,
M.
, and
Martin
,
W.
,
2013
, “
Reduced Order Model Analysis of Frequency Response of Alternating Current Near Half Natural Frequency Electrostatically Actuated MEMS Cantilevers
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p.
031011
.10.1115/1.4023164
12.
Linzon
,
Y.
,
Ilic
,
B.
,
Stella
,
L.
, and
Slava
,
K.
,
2013
, “
Efficient Parametric Excitation of Silicon-On-Insulator Microcantilever Beams by Fringing Electrostatic Fields
,”
J. Appl. Phys.
,
113
(
16
), p.
163508
.10.1063/1.4802680
13.
Buks
,
E.
, and
Roukes
,
M. L.
,
2002
, “
Electrically Tunable Collective Response in a Coupled Micromechanical Array
,”
IEEE J. Microelectromech. Syst.
,
11
(
6
), pp.
802
807
.10.1109/JMEMS.2002.805056
14.
Gutschmidt
,
S.
, and
Gottlieb
,
O.
,
2010
, “
Internal Resonance and Bifurcations of an Array Below the First Pull-In Instability
,”
Int. J. Bifurcation Chaos
,
20
(
3
), pp.
605
618
.10.1142/S0218127410025910
15.
Gutschmidt
,
S.
, and
Gottlieb
,
O.
,
2012
, “
Nonlinear Dynamic Behavior of a Microbeam Array Subject to Parametric Actuation at Low, Medium and Large DC-Voltages
,”
Nonlinear Dyn.
,
67
(
1
), pp.
1
36
.10.1007/s11071-010-9888-y
16.
Lifshitz
,
R.
, and
Cross
,
M. C.
,
2003
, “
Response of Parametrically Driven Nonlinear Coupled Oscillators With Application to Micromechanical and Nanomechanical Resonator Arrays
,”
Phys. Rev. B
,
67
(
13
), p.
134302
.10.1103/PhysRevB.67.134302
17.
Pandey
,
A. K.
,
2013
, “
Effect of Coupled Modes on Pull-In Voltage and Frequency Tuning of a NEMS Device
,”
J. Micromech. Microeng.
,
23
(
8
), p.
085015
.10.1088/0960-1317/23/8/085015
18.
Perkins
,
N. C.
,
1992
, “
Modal Interaction in the Non-Linear Response of Elastic Cables Under Parametric/External Excitation
,”
Int. J. Nonlinear Mech.
,
27
(
2
), pp.
233
250
.10.1016/0020-7462(92)90083-J
19.
Chen
,
S.-Y.
, and
Tang
,
J.-Y.
,
2008
, “
Study on a New Nonlinear Parametric Excitation Equation: Stability and Bifurcation
,”
J. Sound Vib.
,
318
(
4–5
), pp.
1109
1118
.10.1016/j.jsv.2008.04.055
20.
Luongo
,
A.
, and
Zulli
,
D.
,
2011
, “
Parametric, External and Self-Excitation of a Tower Under Turbulent Wind Flow
,”
J. Sound Vib.
,
330
(
13
), pp.
3057
3069
.10.1016/j.jsv.2011.01.016
21.
Falzarano
,
J.
,
Steindl
,
A.
,
Troesch
,
A.
, and
Troger
,
H.
,
1991
, “
Rolling Motion of Ships Treated as Bifurcation Problem
,”
International Series of Numerical Mathematics
, Vol.
97
,
Birkhauser
,
Basel
, pp.
117
121
.10.1007/978-3-0348-7004-7_13
22.
Kim
,
I. K.
, and
Lee
,
S. I.
,
2013
, “
Theoretical Investigation of Nonlinear Resonances in a Carbon Nanotube Cantilever With a Tip-Mass Under Electrostatic Excitation
,”
J. Appl. Phys.
,
114
(
10
), p.
104303
.10.1063/1.4820577
23.
Nayfeh
,
A. H.
,
2000
,
Nonlinear Interactions
,
Wiley-Interscience
,
New York
.
24.
Hagedorn
,
P.
, and
DasGupta
,
A.
,
2007
,
Vibrations and Waves in Continuous Mechanical Systems
,
Wiley
,
Chichester, UK
.10.1002/9780470518434
25.
Meirovitch
,
L.
,
1975
,
Elements of Vibration Analysis
,
McGraw-Hill
,
New York
.
You do not currently have access to this content.