Despite the neuromechanical complexity underlying animal locomotion, the steady-state center-of-mass motions and ground reaction forces of animal running can be predicted by simple spring-mass models such as the canonical spring-loaded inverted pendulum (SLIP) model. Such SLIP models have been useful for the fields of biomechanics and robotics in part because ground reaction forces are commonly measured and readily available for comparing with model predictions. To better predict the stability of running, beyond the canonical conservative SLIP model, more recent extensions have been proposed and investigated with hip actuation and linear leg damping (e.g., hip-actuated SLIP). So far, these attempts have gained improved prediction of the stability of locomotion but have led to a loss of the ability to accurately predict ground reaction forces. Unfortunately, the linear damping utilized in current models leads to an unrealistic prediction of damping force and ground reaction force with a large nonzero magnitude at touchdown (TD). Here, we develop a leg damping model that is bilinear in leg length and velocity in order to yield improved damping force and ground reaction force prediction. We compare the running ground reaction forces, small and large perturbation stability, parameter sensitivity, and energetic cost resulting from both the linear and bilinear damping models. We found that bilinear damping helps to produce more realistic, smooth vertical ground reaction forces, thus fixing the current problem with the linear damping model. Despite large changes in the damping force and power loss profile during the stance phase, the overall dynamics and energetics on a stride-to-stride basis of the two models are largely the same, implying that the integrated effect of damping over a stride is what matters most to the stability and energetics of running. Overall, this new model, an actuated SLIP model with bilinear damping, can provide significantly improved prediction of ground reaction forces as well as stability and energetics of locomotion.

References

1.
Geyer
,
H.
,
Seyfarth
,
A.
, and
Blickhan
,
R.
,
2005
, “
Spring-Mass Running: Simple Approximate Solution and Application to Gait Stability
,”
J. Theor. Biol.
,
232
(3), pp. 315–328.
2.
Blickhan
,
R.
, and
Full
,
R.
,
1992
, “
Similarity in Multilegged Locomotion: Bouncing Like a Monopode
,”
J. Comp. Physiol., A
,
173
(
5
), pp.
509
517
.
3.
Full
,
R.
, and
Koditschek
,
D.
,
1999
, “
Templates and Anchors: Neuromechanical Hypotheses of Legged Locomotion on Land
,”
J. Exp. Biol.
,
202
(
Pt 23
), pp.
3325
3332
.
4.
Schwind
,
W.
,
1998
, “
Spring Loaded Inverted Pendulum Running: A Plant Model
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
5.
Ghigliazza
,
R. M.
,
Altendorfer
,
R.
,
Holmes
,
P.
, and
Koditschek
,
D.
,
2003
, “
A Simply Stabilized Running Model
,”
SIAM J. Appl. Dyn. Syst.
,
2
(
2
), pp.
187
218
.
6.
Seyfarth
,
A.
,
Geyer
,
H.
, and
Herr
,
H.
,
2003
, “
Swing-Leg Retraction: A Simple Control Model for Stable Running
,”
J. Exp. Biol.
,
206
, pp.
2547
2555
.
7.
Seyfarth
,
A.
,
Geyer
,
H.
,
Gunther
,
M.
, and
Blickhan
,
R.
,
2002
, “
A Movement Criterion for Running
,”
J. Biomech.
,
35
(5), pp.
649
655
.
8.
Shen
,
Z. H.
, and
Seipel
,
J.
,
2012
, “
A Fundamental Mechanism of Legged Locomotion With Hip Torque and Leg Damping
,”
Bioinspiration Biomimetics
,
7
(
4
), p.
046010
.
9.
Seyfarth
,
A.
,
Geyer
,
H.
, and
Herr
,
H.
,
2003
, “
Swing-Leg Retraction: A Simple Control Model for Stable Running
,”
J. Exp. Biol.
,
206
(15), pp.
2547
2555
.
10.
Blum
,
Y.
,
Lipfert
,
S.
,
Rummel
,
J.
, and
Seyfarth
,
A.
,
2010
, “
Swing Leg Control in Human Running
,”
Bioinspiration Biomimetics
,
5
(
2
), p.
026006
.
11.
Ankarali
,
M. M.
, and
Saranli
,
U.
,
2010
, “
Stride-to-Stride Energy Regulation for Robust Self-Stability of a Torque-Actuated Dissipative Spring-Mass Hopper
,”
Chaos
,
20
(
3
), p.
033121
.
12.
Seipel
,
J.
, and
Holmes
,
P.
,
2007
, “
A Simple Model for Clock-Actuated Legged Locomotion
,”
Regul. Chaotic Dyn.
,
12
(
5
), pp.
502
520
.
13.
Saranli
,
U.
,
Buehler
,
M.
, and
Koditschek
,
D.
,
2001
, “
RHex: A Simple and Highly Mobile Hexapod Robot
,”
Int. J. Rob. Res.
,
20
(
1
), pp.
616
631
.
14.
Holmes
,
P.
,
Full
,
R.
,
Koditschek
,
D.
, and
Guckenheimer
,
J.
,
2006
, “
The Dynamics of Legged Locomotion: Models, Analyses, and Challenges
,”
SIAM Rev.
,
48
, pp.
207
304
.
15.
Schmitt
,
J.
,
2006
, “
A Simple Stabilizing Control for Sagittal Plane Locomotion
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(4), pp.
348
357
.
16.
Maus
,
H. M.
,
Rummel
,
J.
, and
Seyfarth
,
A.
,
2008
, “
Stable Upright Walking and Running Using a Simple Pendulum Based Control Scheme
,”
CLAWAR
, pp.
623
629
.
17.
Sreenath
,
K.
,
Park
,
H. W.
,
Poulakakis
,
I.
, and
Grizzle
,
J.
,
2013
, “
Embedding Active Force Control Within the Compliant Hybrid Zero Dynamics to Achieve Stable, Fast Running on MABEL
,”
Int. J. Rob. Res.(IJRR)
,
32
(
3
), pp.
324
345
.
18.
Altendorfer
,
R.
,
Koditschek
,
D.
,
Komsuoglu
,
H.
,
Buehler
,
M.
,
Moore
,
N.
, and
McMordie
,
D.
,
2001
, “
Evidence for Spring Loaded Inverted Pendulum Running in a Hexapod Robot
,”
Experimental Robotics VII
, Springer Verlag, Berlin, Heidelberg Germany, pp.
291
302
.
19.
Komsuoglu
,
H.
,
Majumdar
,
A.
,
Aydin
,
Y.
, and
Koditschek
,
D.
,
2010
, “
Characterization of Dynamic Behaviors in a Hexapod Robot
,”
Experimental Robotics
, Springer, Berling, Heidelberg, Germany, pp. 667–684.
20.
Kim
,
K. Y.
,
Kwon
,
O.
,
Yeon
,
J. S.
, and
Park
,
J. H.
,
2006
, “
Elliptic Trajectory Generation for Galloping Quadruped Robots
,”
IEEE
International Conference on Robotics and Biomimetics, Kunming, Dec. 17–20, pp.
103
108
.
21.
Mordatch
,
I.
,
de Lasa
,
M.
, and
Hertzmann
,
A.
,
2010
, “
Robust Physics-Based Locomotion Using Low-Dimensional Planning
,”
ACM Trans. Graphics
,
29
(
3
), p. 71.
22.
Keilson
,
S. E.
,
Teich
,
M. C.
, and
Kahnna
,
S. M.
,
1989
, “
Models of Nonlinear Vibrations. I. Oscillator With Bilinear Resistance
,”
Acta Otolaryngol.
,
108
(s467), pp.
241
248
.
23.
Chen
,
J. T.
, and
You
,
D. W.
,
1997
, “
Hysteretic Damping Revisited
,”
Adv. Eng. Software
,
28
(3), pp.
165
171
.
24.
de Kraker
,
B.
,
2004
,
A Numerical-Experimental Approach in Structural Dynamics
, Shaker Publishing.
25.
Den Hartog
,
J. P.
,
1985
,
Mechanical Vibrations
,
Courier Dover Publications
.
26.
Hill
,
A. V.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. London
,
126
(
843
), pp.
136
195
.
27.
Hill
,
A. V.
,
1949
, “
The Abrupt Transition From Rest to Activity in Muscle
,”
Proc. R. Soc. London
,
136
(
884
), pp.
399
420
.
28.
Schmidt-Nielsen
,
K.
,
1972
, “
Locomotion: Energy Cost of Swimming, Flying, and Running
,”
Science
,
177
(
4045
), pp.
222
228
.
29.
McGowan
,
C. P.
,
Grabowski
,
A. M.
,
McDermott
,
W. J.
,
Herr
,
H. M.
, and
Kram
,
R.
,
2012
, “
Leg Stiffness of Sprinters Using Running-Specific Prostheses
,”
J. R. Soc. Interface
,
9
(
73
), pp.
1975
1982
.
30.
Alexander
,
R. M.
,
2005
, “
Models and the Scaling of Energy Costs for Locomotion
,”
J. Exp. Biol.
,
208
(
9
), pp.
1645
1652
.
You do not currently have access to this content.