In this paper, we study the dynamics of an articulated planar mobile robot for confined environment exploration. The mobile vehicle is composed of n identical modules hitched together with passive revolute joints. Each module has the structure of a four-bar parallel mechanism on a mobile platform. The dynamic model is derived using Lagrange formulation. Computer simulations illustrate the model by addressing a path following problem inside a pipe. The dynamic model presented in this paper is the basis for the design of motion control algorithms that encode energy optimization and sensor performance maximization.

References

1.
Hirose
,
S.
, and
Morishima
,
A.
,
1990
, “
Design and Control of a Mobile Robot With an Articulated Body
,”
J. Robot. Res.
,
9
(
2
), pp.
99
114
.10.1177/027836499000900208
2.
Mirats Tur
,
J.
, and
Garthwaite
,
W.
,
2010
, “
Robotic Devices for Water Main In-Pipe Inspection: A Survey
,”
J. Field Rob.
,
27
(
4
), pp.
491
508
.10.1002/rob.20347
3.
Mazumdar
,
A.
, and
Asada
,
H. H.
,
2010
, “
An Underactuated, Magnetic-Foot Robot for Steel Bridge Inspection
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031007
.10.1115/1.4001778
4.
Suzumori
,
K.
,
Wakimoto
,
S.
, and
Takata
,
M.
,
2003
, “
A Miniature Inspection Robot Negotiating Pipes of Widely Varying Diameter
,”
Proceedings of IEEE International Conference on Robotics and Automation
, Vol.
1–3
, pp.
2735
2740
.
5.
Schempf
,
H.
,
Mutschler
,
E.
,
Goltsberg
, V
.
,
Skoptsov
,
G.
,
Gavaert
,
A.
, and
Vradis
,
G.
,
2003
, “
Explorer: Untethered Real-Time Gas Main Assessment Robot System
,”
Proceedings of International Workshop on Advances in Service Robotics
, ASER’03, Bardolino, Italy.
6.
Jamoussi
,
A.
,
2005
, “
Robotic NDE: A New Solution for In-Line Pipe Inspection
,”
Middle East Nondestructive Testing Conference and Exhibition
, Manama, Bahrain, Nov. 27–30.
7.
Fjerdingen
,
S. A.
,
Liljebäck
,
P.
, and
Transeth
,
A. A.
,
2009
, “
A Snake-Like Robot for Internal Inspection of Complex Pipe Structures (PIKo)
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, pp.
5665
5671
.
8.
Shin
,
H.
,
Jeong
,
K.-M.
, and
Kwon
,
J.-J.
,
2010
, “
Development of a Snake Robot Moving in a Small Diameter Pipe
,”
International Conference on Control, Automation and Systems (ICCAS 2010)
, pp.
1826
1829
.
9.
Dertien
,
E.
,
Stramigioli
,
S.
, and
Pulles
,
K.
,
2011
, “
Development of an Inspection Robot for Small Diameter Gas Distribution Mains
,”
IEEE International Conference on Robotics and Automation (ICRA)
, pp.
5044
5049
.
10.
Transeth
,
A. A.
, and
Pettersen
,
K. Y.
,
2006
, “
Developments in Snake Robot Modeling and Locomotion
,”
International Conference on Control, Automation, Robotics and Vision ICARCV
, pp.
1
8
.
11.
Wiriyacharoensunthorn
,
P.
, and
Laowattana
,
S.
,
2002
, “
Analysis and Design of a Multi-Link Mobile Robot (Serpentine)
,”
IEEE International Conference on Industrial Technology
, Vol.
2
, pp.
694
699
.
12.
Ostrowski
,
J.
, and
Burdick
,
J.
,
1996
, “
Gait Kinematics for a Serpentine Robot
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
2
, pp.
1294
1299
.
13.
Transeth
,
A. A.
,
Leine
,
R. I.
,
Glocker
,
C.
,
Pettersen
,
K. Y.
, and
Liljebäck
,
P.
,
2008
, “
Snake Robot Obstacle-Aided Locomotion: Modeling, Simulations, and Experiments
,”
IEEE Trans. Rob.
,
24
(
1
), pp.
88
104
.10.1109/TRO.2007.914849
14.
Ma
,
S.
, and
Tadokoro
,
N.
,
2006
, “
Analysis of Creeping Locomotion of a Snake-Like Robot on a Slope
,”
Auton. Rob.
,
20
(
1
), pp.
15
23
.10.1007/s10514-006-5204-6
15.
Bayraktaroglu
,
Z. Y.
, and
Blazevic
,
P.
,
2005
, “
Understanding Snakelike Locomotion Through a Novel Push-Point Approach
,”
ASME J. Dyn. Syst., Meas., Control
,
127
(
1
), pp.
146
152
.10.1115/1.1870045
16.
Hopkins
,
J. K.
,
Spranklin
,
B. W.
, and
Gupta
,
S. K.
,
2011
, “
A Case Study in Optimization of Gait and Physical Parameters for a Snake-Inspired Robot Based on a Rectilinear Gait
,”
ASME J. Mech. Rob.
,
3
(
1
), p.
014503
.10.1115/1.4003077
17.
Briot
,
S.
,
Glazunov
,
V.
, and
Arakelian
,
V.
,
2013
, “
Investigation on the Effort Transmission in Planar Parallel Manipulators
,”
ASME J. Mech. Rob.
,
5
(
1
), p.
011011
.10.1115/1.4023325
18.
Carretero
,
J. A.
,
Ebrahimi
,
I.
, and
Boudreau
,
R.
,
2012
, “
Overall Motion Planning for Kinematically Redundant Parallel Manipulators
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
024502
.10.1115/1.4006523
19.
Hu
,
B.
,
Yu
,
J.
,
Lu
,
Y.
,
Sui
,
C.
, and
Han
,
J.
,
2012
, “
Statics and Stiffness Model of Serial-Parallel Manipulator Formed by k Parallel Manipulators Connected in Series
,”
Trans. ASME J. Mech. Rob.
,
4
(
2
), p.
021012
.10.1115/1.4006190
20.
Bolzern
,
P.
,
DeSantis
,
R.
,
Locatelli
,
A.
, and
Togno
,
S.
,
1996
, “
Dynamic Model of a Two-Trailer Articulated Vehicle Subject to Nonholonomic Constraints
,”
Robotica
,
14
(
4
), pp.
445
450
.10.1017/S0263574700019858
21.
Ute
,
J.
, and
Ono
,
K.
,
2002
, “
Fast and Efficient Locomotion of a Snake Robot Based on Self-Excitation Principle
,”
Proceedings of the 7th International Workshop on Advanced Motion Control
, pp.
532
539
.
22.
Transeth
,
A. A.
,
Leine
,
R. I.
,
Glocker
,
C.
, and
Pettersen
,
K. Y.
,
2008
, “
3-D Snake Robot Motion: Nonsmooth Modeling, Simulations, and Experiments
,”
IEEE Trans. Rob.
,
24
(
2
), pp.
361
376
.10.1109/TRO.2008.917003
23.
Liljebäck
,
P.
,
Pettersen
,
K. Y.
,
Stavdahl
,
O.
, and
Gravdahl
,
J. T.
,
2010
, “
A Simplified Model of Planar Snake Robot Locomotion
,”
IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems (IROS 2010)
, pp.
2868
2875
.
24.
Liljebäck
,
P.
,
Pettersen
,
K.
,
Stavdahl
,
O.
, and
Gravdahl
,
J.
,
2010
, “
Hybrid Modelling and Control of Obstacle-Aided Snake Robot Locomotion
,”
IEEE Trans. Rob.
,
26
(
5
), pp.
781
799
.10.1109/TRO.2010.2056211
25.
Murugendran
,
B.
,
Transeth
,
A. A.
, and
Fjerdingen
,
S. A.
,
2009
, “
Modeling and Path-Following for a Snake Robot With Active Wheels
,”
IEEE-RSJ International Conference on Intelligent Robots and Systems
, pp.
3643
3650
.
26.
Li
,
N.
,
Zhao
,
T.
, and
Zhao
,
Y.
,
2008
, “
The Dynamic Modeling of Snake-Like Robot by Using Nominal Mechanism Method
,”
ICIRA’08 Proceedings of the First International Conference on Intelligent Robotics and Applications: Part I
, pp.
1185
1194
.
27.
Liljebäck
,
P.
,
Pettersen
,
K.
,
Stavdahl
,
O.
, and
Gravdahl
,
J.
,
2012
, “
A Review on Modelling, Implementation, and Control of Snake Robots
,”
Rob. Auton. Syst.
,
60
(
1
), pp.
29
40
.10.1016/j.robot.2011.08.010
28.
Samin
,
J.-C.
, and
Fisette
,
P.
,
2003
, “Symbolic Modeling of Multibody Systems,”
Solid Mechanics and Its Applications
, Vol. 112,
Springer
,
New York
.
29.
Bendtsen
,
C.
, and
Thomsen
,
P.
,
1999
,
Numerical Solution of Differential Algebraic Equations
,
IMM, Department of Mathematical Modeling, Technical University of Denmark
, Kongens Lyngby, Denmark.
30.
Wijckmans
,
P.
,
1996
, “
Conditioning of Differential Algebraic Equations and Numerical Solution of Multibody Dynamics
,” Ph.D. thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.
31.
Baumgarte
,
J.
,
1972
, “
Stabilization of Constraints and Integrals of Motion in Dynamical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
1
(
1
), pp.
1
16
.10.1016/0045-7825(72)90018-7
32.
Cline
,
M. B.
, and
Pai
,
D. K.
,
2003
, “
Post-Stabilization for Rigid Body Simulation With Contact and Constraints
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Vol.
1–3
, pp.
3744
3751
.
33.
Ascher
,
U.
,
Chin
,
H.
,
Petzold
,
L.
, and
Reich
,
S.
,
1995
, “
Stabilization of Constrained Mechanical Systems With DAEs and Invariant Manifolds
,”
Mech. Struct. Mach.
,
23
, pp.
135
157
.10.1080/08905459508905232
34.
Bauchau
,
O.
, and
Laulusa
,
A.
,
2008
, “
Review of Contemporary Approaches for Constraint Enforcement in Multibody Systems
,”
J. Comput. Nonlinear Dyn.
,
3
(
1
), pp.
1
8
.
35.
Sarfraz
,
H.
,
Spinello
,
D.
,
Gueaieb
,
W.
, and
Douadi
,
L.
,
2013
, “
Critical Maneuvers of an Autonomous Parallel Robot in a Confined Environment
,”
Proceedings of the International Conference of Mechanical Engineering and Mechatronics (ICMEM)
, p.
196
.
36.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.10.1109/70.56660
37.
Merlet
,
J. P.
,
2006
,
Parallel Robots
,
Springer
,
New York
.
38.
Bernstein
,
D. S.
,
2011
,
Matrix Mathematics: Theory, Facts, and Formulas
, 2nd ed.,
Princeton University Press
,
Princeton, NJ
.
39.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2006
,
Robot Modeling and Control
,
Wiley
,
New York
.
40.
Flannery
,
M.
,
2004
, “
The Enigma of Nonholonomic Constraints
,”
Am. J. Phys.
,
73
(
3
), pp.
265
272
.10.1119/1.1830501
41.
Hemami
,
H.
, and
Weimer
,
F. C.
,
1981
, “
Modeling of Nonholonomic Dynamic Systems With Applications
,”
ASME J. Appl. Mech.
,
48
(
1
), pp.
177
182
.10.1115/1.3157563
42.
Metiku
,
R.
,
2004
, “
Computer-Aided Dynamic Force Analysis of Four-Bar Planar Mechanism
,” Master's thesis, Addis Ababa University, School of Graduate Studies, Addis Ababa, Ethiopia.
43.
Poursina
,
M.
, and
Anderson
,
K. S.
,
2013
, “
An Extended Divide-and-Conquer Algorithm for a Generalized Class of Multibody Constraints
,”
Multibody Syst. Dyn.
,
29
(
3
), pp.
235
254
.10.1007/s11044-012-9324-9
44.
Kreutz-Delgado
,
K.
,
Jain
,
A.
, and
Rodriguez
,
G.
,
1991
, “
Recursive Formulation of Operational Space Control
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, pp.
1750
1753
.
45.
Poursina
,
M.
, and
Anderson
,
K. S.
,
2013
, “
Canonical Ensemble Simulation of Biopolymers Using a Coarse-Grained Articulated Generalized Divide-and-Conquer Scheme
,”
Comput. Phys. Commun.
,
184
(
3
), pp.
652
660
.10.1016/j.cpc.2012.10.029
46.
Yu
,
Q.
, and
Chen
,
I.-M.
,
2000
, “
A Direct Violation Correction Method in Numerical Simulation of Constrained Multibody Systems
,”
Comput. Mech.
,
26
(
1
), pp.
52
57
.10.1007/s004660000149
47.
Sastry
,
S. S.
,
1999
,
Nonlinear Systems: Analysis, Stability, and Control
,
Springer
,
New York
.
48.
Altafini
,
C.
,
2002
, “
Following a Path of Varying Curvature as an Output Regulation Problem
,”
IEEE Trans. Autom. Control
,
47
(
9
), pp.
1551
1556
.10.1109/TAC.2002.802750
You do not currently have access to this content.