In this study, the dynamic behavior of a flexible rotor system subjected to support excitation (imposed displacements of its base) is analyzed. The effect of an excitation on lateral displacements is investigated from theoretical and experimental points of view. The study focuses on behavior in bending. A mathematical model with two gyroscopic and parametrical coupled equations is derived using the Rayleigh-Ritz method. The theoretical study is based on both the multiple scales method and the normal form approach. An experimental setup is then developed to observe the dynamic behavior permitting the measurement of lateral displacements when the system’s support is subjected to a sinusoidal rotation. The experimental results are favorably compared with the analytical and numerical results.

1.
Lalanne
,
M.
, and
Ferraris
,
G.
, 1998,
Rotordynamics Prediction in Engineering
, 2nd ed.,
Wiley
, New York.
2.
Subbiah
,
R.
,
Bhat
,
R.
, and
Sankar
,
T. S.
, 1985, “
Response of Rotors Subjected to Random Support Excitations
,”
Trans. ASME, J. Vib., Acoust., Stress, Reliab. Des.
0739-3717,
107
, pp.
453
459
.
3.
Berlioz
,
A.
, and
Ferraris
,
G.
, 1986, “
Utilisation de la Sous-Structuration en Dynamique des Rotors
,”
Méc. Mat. Elec.
,
416
, pp.
30
33
.
4.
Suarez
,
L. E.
,
Rohanimanesh
,
M. S.
, and
Singh
,
M. P.
, 1992, “
Seismic Response of Rotating Machines
,”
Earthquake Eng. Struct. Dyn.
0098-8847,
21
, pp.
21
36
.
5.
Beley-Sayettat
,
A.
, 1994, “
Effet des Dissymétries et Effet Sismique en Dynamique des Rotors
,” Ph.D. thesis No. 94-0105, INSA-Lyon, France.
6.
Ganesan
,
R.
, and
Sankar
,
T. S.
, 1993, “
Resonant Oscillations and Stability of Asymmetric Rotors
,” ASME Design Technical Conference,
14th Biennial Conference on Mechanical Vibration and Noise
,
Alburquerque
, NM, Vol.
56
, pp.
131
137
.
7.
Ganesan
,
R.
, and
Sankar
,
T. S.
, 1993, “
Non-Stationary Vibrations of Rotor Systems With Non-Symmetric Clearance
,” ASME Design Technical Conference,
14th Biennial Conference on Mechanical Vibration and Noise
,
Alburquerque
, NM, Vol.
56
, pp.
295
301
.
8.
Kang
,
K.
,
Chang
,
Y-P.
,
Tsai
,
J-W.
,
Mu
,
L-H.
, and
Chank
,
Y-F.
, 2000, “
An Investigation in Stiffness Effects on Dynamics of Rotor-Bearing-Foundation Systems
,”
J. Sound Vib.
0022-460X,
231
(
2
), pp.
343
374
.
9.
Edwards
,
S.
,
Lees
,
A. W.
, and
Friswell
,
M. I.
, 2000, “
Experimental Identification of Excitation and Support Parameters of a Flexible Rotor-Bearings-Foundation System From a Single Run-Down
,”
J. Sound Vib.
0022-460X,
232
(
5
), pp.
963
992
.
10.
Bonello
,
P.
, and
Brennan
,
M. J.
, 2001, “
Modeling the Dynamical Behavior of a Supercritical Rotor on a Flexible Foundation Using the Mechanical Impedance Technique
,”
J. Sound Vib.
0022-460X,
239
(
3
), pp.
445
466
.
11.
Duchemin
,
M.
,
Berlioz
,
A.
, and
Ferraris
,
G.
, 2001, “
Modélisation du Comportement Dynamique des Rotors Embarqués
,”
Proc. of XVème Congrès Français de Mécanique
,
15éme Congrés Français de Mécanique
,
Nancy, France
, on CD ROM.
12.
Duchemin
,
M.
,
Ferraris
,
G.
, and
Berlioz
,
A.
, 2006, “
Behavior and Stability of a Rotor Under Base Excitation
,”
ASME J. Vibr. Acoust.
0739-3717, in press.
13.
Nayfeh
,
A. H.
, 1993,
Method of Normal Form
,
Wiley
, New York.
14.
Bolotin
,
V. V.
, 1964,
The Dynamic Stability of Elastic Systems
,
Translated from Russian, Holden Day, Inc.
, San Francisco.
You do not currently have access to this content.