Abstract

Animal skeletal muscle exhibits very interesting behavior at near-stall forces (when the muscle is loaded so strongly that it can barely contract). Near this physical limit, the myosin II proteins may be unable to reach advantageous actin binding sites through simple attractive forces. It has been shown that the advantageous utilization of thermal agitation is a likely source for an increased force-production capacity and reach in myosin-V (a processing motor protein), and here we explore the dynamics of a molecular motor without hand-over-hand motion including Brownian motion to show how local elastic energy well boundaries may be overcome. We revisit a spatially two-dimensional mechanical model to illustrate how thermal agitation can be harvested for useful mechanical work in molecular machinery inspired by this biomechanical phenomenon without rate functions or empirically inspired spatial potential functions. Additionally, the model accommodates variable lattice spacing, and it paves the way for a full three-dimensional model of cross-bridge interactions where myosin II may be azimuthally misaligned with actin binding sites. With potential energy sources based entirely on realizable components, this model lends itself to the design of artificial, molecular-scale motors.

References

References
1.
Carwardine
,
M.
,
2008
,
Animal Records
, Sterling, New York.
2.
Gill
,
V.
,
2014
, “
Hummingbirds Edge Out Helicopters in Hover Contest
,”
BBC News
, New York.
3.
Hartstone-Rose
,
A.
,
Perry
,
J.
, and
Morrow
,
C.
,
2012
, “
Bite Force Estimation and the Fiber Architecture of Felid Masticatory Muscles
,”
Oral Biol.
,
295
(
8
), pp.
1336
1351
.10.1002/ar.22518
4.
Kenny
,
G. P.
,
Reardon
,
F. D.
,
Zaleski
,
W.
,
Reardon
,
M. L.
,
Haman
,
F.
, and
Ducharme
,
M. B.
,
2003
, “
Muscle Temperature Transients Before, During, and After Exercise Measured Using an Intramuscular Multisensor Probe
,”
J. Appl. Physiol.
,
94
(
6
), pp.
2350
2357
.10.1152/japplphysiol.01107.2002
5.
Patton, K.T.,
and Thibodeau
,
G. A.
,
2013
, “
Anthony's Textbook of Anatomy and Physiology,”
Elsevier, St. Louis, MO, Chap. 12.
6.
Ashley
,
S.
,
2003
, “
Artificial Muscles
,”
Sci. Am.
,
289
(
4
), pp.
52
59
.10.1038/scientificamerican1003-52
7.
Brochu
,
P.
, and
Pei
,
Q.
,
2010
, “
Advances in Dielectric Elastomers for Actuators and Artificial Muscles
,”
Macromol. Rapid Commun.
,
31
(
1
), pp.
10
36
.10.1002/marc.200900425
8.
Sharma
,
P.
,
2017
, “
Wildcat-The World's Fastest Quadruped Robot
,”
Boston Dynamics
, Softembly, New York.
9.
Knight
,
W.
,
2015
, “
Why Robots and Humans Struggled With Darpa's Challenge
,” MIT Technology Review, New York, accessed June 9, 2015, https://www.technologyreview.com/s/538156/why-robots-and-humans-struggled-with-darpas-challenge/
10.
Huxley
,
A.
,
1957
, “
Muscle Structure and Theories of Contraction
,”
Prog. Biophys. Mol. Biol.
,
7
, pp.
255
318
.10.1016/S0096-4174(18)30128-8
11.
Hill
,
A.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. B
,
126
(
843
), pp.
136
195
.10.1098/rspb.1938.0050
12.
Lodish
,
H.
,
2000
,
Molecular Cell Biology
, 4th ed.,
Freeman
, New York.
13.
Julicher
,
F.
,
Adjari
,
A.
, and
Prost
,
J.
,
1997
, “
Modeling Molecular Motors
,”
Rev. Moder Phys.
,
69
(
4
), p.
1269
.10.1103/RevModPhys.69.1269
14.
Tamura
,
Y.
,
Ito
,
A.
, and
Saito
,
M.
,
2017
, “
A Model of Muscle Contraction Based on the Langevin Equation With Actomyosin Potentials
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
3
), pp.
273
283
.10.1080/10255842.2016.1215440
15.
Fujita
,
K.
,
Iwaki
,
M.
,
Iwane
,
A.
,
Marcucci
,
L.
, and
Yanagida
,
T.
,
2012
, “
Switching of Myosin-V Motion Between the Lever-Arm Swing and Brownian Search-and-Catch
,”
Nat. Commun.
,
3
(
1
), pp.
1
9
.10.1038/ncomms1934
16.
Piazzesi
,
G.
,
Lucii
,
L.
, and
Lombardi
,
V.
,
2002
, “
The Size and the Speed of the Working Stroke of Muscle Myosin and Its Dependence on the Force
,”
J. Physiol.
,
545
(
1
), pp.
145
152
.10.1113/jphysiol.2002.028969
17.
Nie
,
Q.
,
Togashi
,
A.
,
Sasaki
,
T.
,
Takano
,
M.
,
Sasai
,
M.
, and
Terada
,
T.
,
2014
, “
Coupling of Lever Arm Swing and Biased Brownian Motion in Actomyosin
,”
PLoS Comput. Biol.
,
10
(
4
), p.
e1003552
.10.1371/journal.pcbi.1003552
18.
Marcucci
,
L.
, and
Yanagida
,
T.
,
2012
, “
From Single Molecule Fluctuations to Muscle Contraction: A Brownian Model of A.F. Huxley's Hypotheses
,”
PLoS One
,
7
(
7
), p.
e40042
.10.1371/journal.pone.0040042
19.
Kramer
,
H.
,
1940
, “
Brownian Motion in a Field of Force and the Diffusion Model of Chemical Reactions
,”
Physica
,
7
, pp.
284
304
.10.1016/S0031-8914(40)90098-2
20.
Howard
,
J.
,
2001
,
Mechanics of Motor Proteins and the Cytoskeleton
,
Sinauer Associates
, Sutherland, MA.
21.
Swaminathan
,
R.
,
Hoang
,
C. P.
, and
Verkman
,
A.
,
1997
, “
Photobleaching Recovery and Anisotropy Decay of Green Fluorescent Protein Gfp-s65t in Solution and Cells: Cytoplasmic Viscosity Probed by Green Fluorescent Protein Translational and Rotational Diffusion
,”
Biophys. J.
,
72
(
4
), pp.
1900
1907
.10.1016/S0006-3495(97)78835-0
22.
Luby-Phelps
,
K.
,
1999
, “
Cytoarchitecture and Physical Properties of Cytoplasm: Volume, Viscosity, Diffusion, Intracellular Surface Area
,”
Int. Rev. Cytol.
,
192
, pp.
189
221
.10.1016/S0074-7696(08)60527-6
23.
Daniel
,
T.
,
Trimble
,
A.
, and
Chase
,
P.
,
1998
, “
Compliant Realignment of Binding Sites in Muscle: Transient Behavior and Mechanical Tuning
,”
Biophys. J.
,
74
(
4
), pp.
1611
1621
.10.1016/S0006-3495(98)77875-0
24.
Williams
,
C. D.
,
Regnier
,
M.
, and
Daniel
,
T. L.
,
2010
, “
Axial and Radial Forces of Cross-Bridges Depend on Lattice Spacing
,”
PLoS Comput. Biol.
,
6
(
12
), p.
e1001018
.10.1371/journal.pcbi.1001018
25.
Williams
,
C. D.
,
Regnier
,
M.
, and
Daniel
,
T. L.
,
2012
, “
Elastic Energy Storage and Radial Forces in the Myofilament Lattice Depend on Sarcomere Length
,”
PLoS Comput. Biol.
,
8
(
11
), p.
e1002770
.10.1371/journal.pcbi.1002770
You do not currently have access to this content.