Abstract

High tibial osteotomy is a common procedure for knee osteoarthritis during which the surgeon partially opens the tibia and must stop impacting when cortical bone is reached by the osteotome. Surgeons rely on their proprioception and fluoroscopy to conduct the surgery. Our group has developed an instrumented hammer to assess the mechanical properties of the material surrounding the osteotome tip. The aim of this ex vivo study is to determine whether this hammer can be used to detect the transition from cortical to trabecular bone and vice versa. Osteotomies were performed until rupture in pig tibia using the instrumented hammer. An algorithm was developed to detect both transitions based on the relative variation of an indicator derived from the time variation of the force. The detection by the algorithm of both transitions was compared with the position of the osteotome measured with a video camera and with surgeon proprioception. The difference between the detection of the video and the algorithm (respectively, the video and the surgeon; the surgeon and the algorithm) is 1.0±1.5 impacts (respectively, 0.5±0.6 impacts; 1.4±1.8 impacts), for the detection of the transition from the cortical to trabecular bone. For the transition from the trabecular to cortical bone, the difference is 3.6±2.6 impacts (respectively, 3.9±2.4 impacts; 0.8±0.9 impacts), and the detection by the algorithm was always done before the sample rupture. This ex vivo study demonstrates that this method could prevent impacts leading to hinge rupture.

References

1.
Liu
,
X.
,
Chen
,
Z.
,
Gao
,
Y.
,
Zhang
,
J.
, and
Jin
,
Z.
,
2019
, “
High Tibial Osteotomy: Review of Techniques and Biomechanics
,”
J. Healthcare Eng.
,
2019
, p.
8363128
.10.1155/2019/8363128
2.
Gomoll
,
A. H.
,
2011
, “
High Tibial Osteotomy for the Treatment of Unicompartmental Knee Osteoarthritis: A Review of the Literature, Indications, and Technique
,”
Phys. Sportsmed.
,
39
(
3
), pp.
45
54
.10.3810/psm.2011.09.1920
3.
Peng
,
H.
,
Ou
,
A.
,
Huang
,
X.
,
Wang
,
C.
,
Wang
,
L.
,
Yu
,
T.
,
Zhang
,
Y.
, and
Zhang
,
Y.
,
2021
, “
Osteotomy Around the Knee: The Surgical Treatment of Osteoarthritis
,”
Orthop. Surg.
,
13
(
5
), pp.
1465
1473
.10.1111/os.13021
4.
Gstöttner
,
M.
,
Pedross
,
F.
,
Liebensteiner
,
M.
, and
Bach
,
C.
,
2008
, “
Long-Term Outcome After High Tibial Osteotomy
,”
Arch. Orthop. Trauma Surg.
,
128
(
1
), pp.
111
115
.10.1007/s00402-008-0569-y
5.
Li
,
O. L.
,
Pritchett
,
S.
,
Giffin
,
J. R.
, and
Spouge
,
A. R. I.
,
2022
, “
High Tibial Osteotomy: An Update for Radiologists
,”
Am. J. Roentgenol.
,
218
(
4
), pp.
701
712
.10.2214/AJR.21.26659
6.
Lee
,
D. C.
, and
Byun
,
S. J.
,
2012
, “
High Tibial Osteotomy
,”
Knee Surg. Relat. Res.
,
24
(
2
), pp.
61
69
.10.5792/ksrr.2012.24.2.61
7.
Song
,
K. Y.
,
Koh
,
I. J.
,
Kim
,
M. S.
,
Choi
,
N. Y.
,
Jeong
,
J. H.
, and
In
,
Y.
,
2020
, “
Early Experience of Lateral Hinge Fracture During Medial Opening-Wedge High Tibial Osteotomy: Incidence and Clinical Outcomes
,”
Arch. Orthop. Trauma Surg.
,
140
(
2
), pp.
161
169
.10.1007/s00402-019-03237-0
8.
Franulic
,
N.
,
Muñoz
,
J. T.
,
Figueroa
,
F.
,
Innocenti
,
P.
, and
Gaggero
,
N.
,
2023
, “
Lateral Hinge Fracture in Medial Opening Wedge High Tibial Osteotomy: A Narrative Review
,”
EFORT Open Rev.
,
8
(
7
), pp.
572
580
.10.1530/EOR-22-0103
9.
Ellis
,
R. E.
,
Tso
,
C. Y.
,
Rudan
,
J. F.
, and
Harrison
,
M. M.
,
1999
, “
A Surgical Planning and Guidance System for High Tibial Osteotomy
,”
Comput. Aided Surg.
,
4
, pp.
264
274
.10.3109/10929089909148179
10.
Wang
,
G.
,
Zheng
,
G.
,
Gruetzner
,
P. A.
,
Mueller-Alsbach
,
U.
,
von Recum
,
J.
,
Staubli
,
A.
, and
Nolte
,
L.-P.
,
2005
, “
A Fluoroscopy-Based Surgical Navigation System for High Tibial Osteotomy
,”
Technol. Health Care Off. J. Eur. Soc. Eng. Med.
,
13
(
6
), pp.
469
483
.10.3233/THC-2005-13603
11.
Wang
,
G.
,
Zheng
,
G.
,
Keppler
,
P.
,
Gebhard
,
F.
,
Staubli
,
A.
,
Mueller
,
U.
,
Schmucki
,
D.
,
Fluetsch
,
S.
, and
Nolte
,
L.-P.
,
2005
, “
Implementation, Accuracy Evaluation, and Preliminary Clinical Trial of a CT-Free Navigation System for High Tibial Opening Wedge Osteotomy
,”
Comput. Aided Surg.
,
10
(
2
), pp.
73
86
.10.3109/10929080500228837
12.
Lorenz
,
S.
,
Morgenstern
,
M.
, and
Imhoff
,
A. B.
,
2007
, “
Development of an Image-Free Navigation Tool for High Tibial Osteotomy
,”
Oper. Tech. Orthop.
,
17
(
1
), pp.
58
65
.10.1053/j.oto.2006.12.001
13.
Kim
,
S.-J.
,
Koh
,
Y.-G.
,
Chun
,
Y.-M.
,
Kim
,
Y.-C.
,
Park
,
Y.-S.
, and
Sung
,
C.-H.
,
2009
, “
Medial Opening Wedge High-Tibial Osteotomy Using a Kinematic Navigation System Versus a Conventional Method: A 1-Year Retrospective, Comparative Study
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
17
, pp.
128
134
.10.1007/s00167-008-0630-y
14.
Chang
,
J.
,
Scallon
,
G.
,
Beckert
,
M.
,
Zavala
,
J.
,
Bollier
,
M.
,
Wolf
,
B.
, and
Albright
,
J.
,
2017
, “
Comparing the Accuracy of High Tibial Osteotomies Between Computer Navigation and Conventional Methods
,”
Comput. Assist. Surg.
,
22
(
1
), pp.
1
8
.10.1080/24699322.2016.1271909
15.
Song
,
S. J.
, and
Bae
,
D. K.
,
2016
, “
Computer-Assisted Navigation in High Tibial Osteotomy
,”
Clin. Orthop. Surg.
,
8
(
4
), pp.
349
357
.10.4055/cios.2016.8.4.349
16.
Thomas
,
T. L.
,
Goh
,
G. S.
,
Nguyen
,
M. K.
, and
Lonner
,
J. H.
,
2022
, “
Pin-Related Complications in Computer Navigated and Robotic-Assisted Knee Arthroplasty: A Systematic Review
,”
J. Arthroplasty
,
37
(
11
), pp.
2291
2307.e2
.10.1016/j.arth.2022.05.012
17.
Lukas
,
D.
, and
Schulte
,
W.
,
1990
, “
Periotest—A Dynamic Procedure for the Diagnosis of the Human Periodontium
,”
Clin. Phys. Physiol. Meas.
,
11
(
1
), pp.
65
75
.10.1088/0143-0815/11/1/006
18.
Winkler
,
S.
,
Morris
,
H. F.
, and
Spray
,
J. R.
,
2001
, “
Stability of Implants and Natural Teeth as Determined by the Periotest Over 60 Months of Function
,”
J. Oral Implantol.
,
27
(
4
), pp.
198
203
.10.1563/1548-1336(2001)027<0198:SOIANT>2.3.CO;2
19.
Leuridan
,
S.
,
Goossens
,
Q.
,
Pastrav
,
L. C.
,
Mulier
,
M.
,
Desmet
,
W.
,
Vander Sloten
,
J.
, and
Denis
,
K.
,
2021
, “
Development of an Instrument to Assess the Stability of Cementless Femoral Implants Using Vibration Analysis During Total Hip Arthroplasty
,”
IEEE J. Transl. Eng. Health Med.
,
9
, pp.
1
10
.10.1109/JTEHM.2021.3128276
20.
Goossens
,
Q.
,
Pastrav
,
L.
,
Roosen
,
J.
,
Mulier
,
M.
,
Desmet
,
W.
,
Vander Sloten
,
J.
, and
Denis
,
K.
,
2021
, “
Acoustic Analysis to Monitor Implant Seating and Early Detect Fractures in Cementless THA: An in Vivo Study
,”
J. Orthop. Res.
,
39
(
6
), pp.
1164
1173
.10.1002/jor.24837
21.
Homma
,
Y.
,
Ito
,
S.
,
Zhuang
,
X.
,
Baba
,
T.
,
Fujibayashi
,
K.
,
Kaneko
,
K.
,
Nishiyama
,
Y.
, and
Ishijima
,
M.
,
2022
, “
Artificial Intelligence for Distinguishment of Hammering Sound in Total Hip Arthroplasty
,”
Sci. Rep.
,
12
(
1
), p.
9826
.10.1038/s41598-022-14006-2
22.
Homma
,
Y.
,
Tashiro
,
K.
,
Okuno
,
R.
,
Unoki
,
M.
,
Murakami
,
Y.
,
Watari
,
T.
,
Baba
,
T.
, and
Ishijima
,
M.
,
2025
, “
Weak Hammering Sounds Are Associated With Postoperative Subsidence in Cementless Total Hip Arthroplasty
,”
Int. Orthop.
,
49
(
2
), pp.
421
428
.10.1007/s00264-024-06351-w
23.
Tijou
,
A.
,
Rosi
,
G.
,
Hernigou
,
P.
,
Flouzat-Lachaniette
,
C.-H.
, and
Haïat
,
G.
,
2017
, “
Ex Vivo Evaluation of Cementless Acetabular Cup Stability Using Impact Analyses With a Hammer Instrumented With Strain Sensors
,”
Sensors
,
18
(
1
), p.
62
.10.3390/s18010062
24.
Michel
,
A.
,
Bosc
,
R.
,
Meningaud
,
J.-P.
,
Hernigou
,
P.
, and
Haiat
,
G.
,
2016
, “
Assessing the Acetabular Cup Implant Primary Stability by Impact Analyses: A Cadaveric Study
,”
PLoS One
,
11
(
11
), p.
e0166778
.10.1371/journal.pone.0166778
25.
Michel
,
A.
,
Nguyen
,
V.-H.
,
Bosc
,
R.
,
Vayron
,
R.
,
Hernigou
,
P.
,
Naili
,
S.
, and
Haiat
,
G.
,
2017
, “
Finite Element Model of the Impaction of a Press-Fitted Acetabular Cup
,”
Med. Biol. Eng. Comput.
,
55
(
5
), pp.
781
791
.10.1007/s11517-016-1545-2
26.
Poudrel
,
A.-S.
,
Rosi
,
G.
,
Nguyen
,
V.-H.
, and
Haiat
,
G.
,
2022
, “
Modal Analysis of the Ancillary During Femoral Stem Insertion: A Study on Bone Mimicking Phantoms
,”
Ann. Biomed. Eng.
,
50
, pp.
16
28
.10.1007/s10439-021-02887-9
27.
Tijou
,
A.
,
Rosi
,
G.
,
Vayron
,
R.
,
Lomami
,
H. A.
,
Hernigou
,
P.
,
Flouzat-Lachaniette
,
C. H.
, and
Haïat
,
G.
,
2018
, “
Monitoring Cementless Femoral Stem Insertion by Impact Analyses: An in Vitro Study
,”
J. Mech. Behav. Biomed. Mater.
,
88
, pp.
102
108
.10.1016/j.jmbbm.2018.08.009
28.
Lomami
,
H. A.
,
Damour
,
C.
,
Rosi
,
G.
,
Poudrel
,
A.-S.
,
Dubory
,
A.
,
Flouzat-Lachaniette
,
C.-H.
, and
Haiat
,
G.
,
2020
, “
Ex Vivo Estimation of Cementless Femoral Stem Stability Using an Instrumented Hammer
,”
Clin. Biomech.
,
76
, p.
105006
.10.1016/j.clinbiomech.2020.105006
29.
Dubory
,
A.
,
Rosi
,
G.
,
Tijou
,
A.
,
Lomami
,
H. A.
,
Flouzat-Lachaniette
,
C.-H.
, and
Haïat
,
G.
,
2020
, “
A Cadaveric Validation of a Method Based on Impact Analysis to Monitor the Femoral Stem Insertion
,”
J. Mech. Behav. Biomed. Mater.
,
103
, p.
103535
.10.1016/j.jmbbm.2019.103535
30.
Hubert
,
A.
,
Rosi
,
G.
,
Bosc
,
R.
, and
Haiat
,
G.
,
2020
, “
Using an Impact Hammer to Estimate Elastic Modulus and Thickness of a Sample During an Osteotomy
,”
ASME J. Biomech. Eng.
,
142
, p.
071009
.10.1115/1.4046200
31.
Lamassoure
,
L.
,
Giunta
,
J.
,
Rosi
,
G.
,
Poudrel
,
A.-S.
,
Bosc
,
R.
, and
Haïat
,
G.
,
2021
, “
Using an Impact Hammer to Perform Biomechanical Measurements During Osteotomies: Study of an Animal Model
,”
Proc. Inst. Mech. Eng. H
,
235
(
7
), pp.
838
845
.10.1177/09544119211011824
32.
Lamassoure
,
L.
,
Giunta
,
J.
,
Rosi
,
G.
,
Poudrel
,
A.-S.
,
Meningaud
,
J.-P.
,
Bosc
,
R.
, and
Haïat
,
G.
,
2021
, “
Anatomical Subject Validation of an Instrumented Hammer Using Machine Learning for the Classification of Osteotomy Fracture in Rhinoplasty
,”
Med. Eng. Phys.
,
95
, pp.
111
116
.10.1016/j.medengphy.2021.08.004
33.
Bas dit Nugues
,
M.
,
Rosi
,
G.
,
Hériveaux
,
Y.
, and
Haïat
,
G.
,
2023
, “
Using an Instrumented Hammer to Predict the Rupture of Bone Samples Subject to an Osteotomy
,”
Sensors
,
23
(
4
), p.
2304
.10.3390/s23042304
34.
Bas dit Nugues
,
M.
,
Lamassoure
,
L.
,
Rosi
,
G.
,
Flouzat-Lachaniette
,
C. H.
,
Khonsari
,
R. H.
, and
Haiat
,
G.
,
2025
, “
An Instrumented Hammer to Detect the Rupture of the Pterygoid Plates
,”
Ann. Biomed. Eng.
,
53
(
1
), pp.
59
70
.10.1007/s10439-024-03596-9
35.
Bosc
,
R.
,
Tijou
,
A.
,
Rosi
,
G.
,
Nguyen
,
V.-H.
,
Meningaud
,
J.-P.
,
Hernigou
,
P.
,
Flouzat-Lachaniette
,
C.-H.
, and
Haiat
,
G.
,
2018
, “
Influence of Soft Tissue in the Assessment of the Primary Fixation of Acetabular Cup Implants Using Impact Analyses
,”
Clin. Biomech.
,
55
, pp.
7
13
.10.1016/j.clinbiomech.2018.03.013
36.
Takahashi
,
T.
,
Takahashi
,
M.
,
Yamamoto
,
H.
, and
Miura
,
H.
,
2018
, “
Biomechanical Study of Optimum Anchorage in Dome-Shaped High Tibial Osteotomy
,”
J. Orthop. Surg.
,
26
(
3
), p.
230949901879240
.10.1177/2309499018792406
37.
Kwun
,
J.-D.
,
Kim
,
H.-J.
,
Park
,
J.
,
Park
,
I.-H.
, and
Kyung
,
H.-S.
,
2017
, “
Open Wedge High Tibial Osteotomy Using Three-Dimensional Printed Models: Experimental Analysis Using Porcine Bone
,”
Knee
,
24
(
1
), pp.
16
22
.10.1016/j.knee.2016.09.026
38.
Nibe
,
Y.
,
Takahashi
,
T.
,
Hai
,
H.
,
Matsumura
,
T.
, and
Takeshita
,
K.
,
2024
, “
Comparative Biomechanical Analysis of Tibial Posterior Slope in Medial Open Wedge High Tibial Osteotomy vs. Distal Tuberosity Osteotomy With and Without Anterior-Posterior Screw: A Study Using Porcine Tibia
,”
SICOT-J
,
10
, p.
41
.10.1051/sicotj/2024042
39.
Ha
,
J.-K.
,
Yeom
,
C. H.
,
Jang
,
H. S.
,
Song
,
H. E.
,
Lee
,
S. J.
,
Kim
,
K. H.
,
Chung
,
K. S.
,
Bhat
,
M. G.
, and
Kim
,
J. G.
,
2016
, “
Biomechanical Analysis of a Novel Wedge Locking Plate in a Porcine Tibial Model
,”
Clin. Orthop. Surg.
,
8
, pp.
373
378
.10.4055/cios.2016.8.4.373
40.
Kato
,
N.
,
Koshino
,
T.
,
Saito
,
T.
, and
Takeuchi
,
R.
,
1998
, “
Estimation of Young's Modulus in Swine Cortical Bone Using Quantitative Computed Tomography
,”
Bull. Hosp. Jt. Dis. N. Y.
,
57
(
4
), pp.
183
186
.https://pubmed.ncbi.nlm.nih.gov/9926256/
41.
Rho
,
J. Y.
,
Ashman
,
R. B.
, and
Turner
,
C. H.
,
1993
, “
Young's Modulus of Trabecular and Cortical Bone Material: Ultrasonic and Microtensile Measurements
,”
J. Biomech.
,
26
, pp.
111
119
.10.1016/0021-9290(93)90042-D
42.
Rho
,
J. Y.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
,
1997
, “
Elastic Properties of Human Cortical and Trabecular Lamellar Bone Measured by Nanoindentation
,”
Biomaterials
,
18
(
20
), pp.
1325
1330
.10.1016/S0142-9612(97)00073-2
43.
Hoffler
,
C. E.
,
Moore
,
K. E.
,
Kozloff
,
K.
,
Zysset
,
P. K.
,
Brown
,
M. B.
, and
Goldstein
,
S. A.
,
2000
, “
Heterogeneity of Bone Lamellar-Level Elastic Moduli
,”
Bone
,
26
(
6
), pp.
603
609
.10.1016/S8756-3282(00)00268-4
44.
Quintana-Barcia
,
C.
,
Rodríguez
,
C.
,
Álvarez
,
G.
, and
Maestro
,
A.
,
2021
, “
Biomechanical Behavior Characterization and Constitutive Models of Porcine Trabecular Tibiae
,”
Biology
,
10
(
6
), p.
532
.10.3390/biology10060532
45.
Goldstein
,
S. A.
,
1987
, “
The Mechanical Properties of Trabecular Bone: Dependence on Anatomic Location and Function
,”
J. Biomech.
,
20
(
11–12
), pp.
1055
1061
.10.1016/0021-9290(87)90023-6
46.
Wu
,
D.
,
Isaksson
,
P.
,
Ferguson
,
S. J.
, and
Persson
,
C.
,
2018
, “
Young's Modulus of Trabecular Bone at the Tissue Level: A Review
,”
Acta Biomater.
,
78
, pp.
1
12
.10.1016/j.actbio.2018.08.001
47.
Poudrel
,
A.-S.
,
Nguyen
,
V.-H.
,
Haiat
,
G.
, and
Rosi
,
G.
,
2023
, “
Optimization of a Smart Beam for Monitoring a Connected Inaccessible Mechanical System: Application to Bone-Implant Coupling
,”
Mech. Syst. Signal Process
,
192
, p.
110188
.10.1016/j.ymssp.2023.110188
You do not currently have access to this content.