Abstract

Robot-assisted gait rehabilitation is an increasingly common therapeutic intervention for enhancing locomotion and improving quality of life for children with lower-limb mobility impairments. However, there are few systems specifically designed for pediatric use, and those that do exist are largely cumbersome, bulky, and noncustom devices that ultimately reduce therapy effectiveness. This paper introduces the Cable-Driven Joint System (CDJS), a novel approach for pediatric gait rehabilitation that addresses these shortcomings in a lightweight and compact robotic device using the patient's professionally fitted orthosis. The CDJS consists of a 2.1 kg actuation unit that is held by a clinician which delivers assistive torques through a Bowden cable transmission to a 0.3 kg joint mounted to user-custom bracing. This work details an actuator benchtop evaluation, demonstrating a peak torque of 20 N·m, peak velocity of 7.2 rad/s, bandwidth of 9.7 Hz, and a mass moment of inertia of 58.38 kg cm2. An actuator model was developed and evaluated in simulation, showing a strong correlation with the experimental torque data (R-squared = 0.95) and indicating a transmission efficiency of 72%. In-air gait tracking experiments on an emulated subject showed that the CDJS assisted the subject to track a nominal knee trajectory with an average root-mean-squared error of 2.56 deg at a continuous torque of 1.37 N·m. These results suggest that the cable-driven actuator meets the design requirements for use in pediatric gait rehabilitation and is ready for implementation in clinical device trials.

References

1.
Erickson
,
W.
,
Lee
,
C.
, and
von Schrader
,
S.
,
2023
, “
2021 Disability Status Report: United States
,” Cornell University, Ithaca, NY, accessed Aug. 3, 2024, https://www.ilr.cornell.edu/yti/work
2.
Murphy
,
K. P.
,
McMahon
,
M. A.
, and
Houtrow
,
A. J.
,
2020
,
Pediatric Rehabilitation Principles and Practice
,
Springer Publishing Company
,
New York
.
3.
Damiano
,
D. L.
, and
DeJong
,
S. L.
,
2009
, “
A Systematic Review of the Effectiveness of Treadmill Training and Body Weight Support in Pediatric Rehabilitation
,”
J. Neurol. Phys. Ther.
,
33
(
1
), pp.
27
44
.10.1097/NPT.0b013e31819800e2
4.
Narayan
,
J.
, and
Dwivedy
,
S. K.
,
2023
, “
Lower Limb Exoskeletons for Pediatric Gait Rehabilitation: A Brief Review of Design, Actuation, and Control Schemes
,” 2023 IEEE International Conference on Advanced Systems and Emergent Technologies (
ICASET
), Hammamet, Tunisia, Apr. 29--May 1, pp.
1
6
.10.1109/IC_ASET58101.2023.10150700
5.
Wang
,
D.
,
Gu
,
X.
, and
Yu
,
H.
,
2023
, “
Sensors and Algorithms for Locomotion Intention Detection of Lower Limb Exoskeletons
,”
Med. Eng. Phys.
,
113
, p.
103960
.10.1016/j.medengphy.2023.103960
6.
Fosch-Villaronga
,
E.
,
Čartolovni
,
A.
, and
Pierce
,
R. L.
,
2020
, “
Promoting Inclusiveness in Exoskeleton Robotics: Addressing Challenges for Pediatric Access
,”
Paladyn J. Behav. Rob.
,
11
(
1
), pp.
327
339
.10.1515/pjbr-2020-0021
7.
Lerner
,
Z. F.
,
Damiano
,
D. L.
, and
Bulea
,
T. C.
,
2017
, “
A Lower-Extremity Exoskeleton Improves Knee Extension in Children With Crouch Gait From Cerebral Palsy
,”
Sci. Transl. Med.
,
9
(
404
), p.
eaam9145
.10.1126/scitranslmed.aam9145
8.
Chen
,
J.
,
Hochstein
,
J.
,
Kim
,
C.
,
Tucker
,
L.
,
Hammel
,
L. E.
,
Damiano
,
D. L.
, and
Bulea
,
T. C.
,
2021
, “
A Pediatric Knee Exoskeleton With Real-Time Adaptive Control for Overground Walking in Ambulatory Individuals With Cerebral Palsy
,”
Front. Rob. AI
,
8
, p.
702137
.10.3389/frobt.2021.702137
9.
Zhang
,
S.
,
Zhu
,
J.
,
Huang
,
T.-H.
,
Yu
,
S.
,
Huang
,
J. S.
,
Lopez-Sanchez
,
I.
,
Devine
,
T.
, et al.,
2024
, “
Actuator Optimization and Deep Learning-Based Control of Pediatric Knee Exoskeleton for Community-Based Mobility Assistance
,”
Mechatronics
,
97
, p.
103109
.10.1016/j.mechatronics.2023.103109
10.
Lee
,
D.
,
McLain
,
B.
,
Kang
,
I.
, and
Young
,
A.
,
2021
, “
Biomechanical Comparison of Assistance Strategies Using a Bilateral Robotic Knee Exoskeleton
,”
IEEE Trans. Biomed. Eng.
,
68
(
9
), pp.
2870
2879
.10.1109/TBME.2021.3083580
11.
Lee
,
D.
,
Shepherd
,
M. K.
,
Mulrine
,
S. C.
,
Schneider
,
J. D.
,
Moore
,
K. F.
,
Eggebrecht
,
E. M.
,
Rogozinski
,
B. M.
,
Herrin
,
K. R.
, and
Young
,
A. J.
,
2023
, “
Reducing Knee Hyperextension With an Exoskeleton in Children and Adolescents With Genu Recurvatum: A Feasibility Study
,”
IEEE Trans. Biomed. Eng.
,
70
(
12
), pp.
3312
3320
.10.1109/TBME.2023.3282165
12.
Lee
,
D.
,
Mulrine
,
S.
,
Shepherd
,
M.
,
Westberry
,
D.
,
Rogozinski
,
B.
,
Herrin
,
K.
, and
Young
,
A.
,
2024
, “
Mitigating Crouch Gait With an Autonomous Pediatric Knee Exoskeleton in the Neurologically Impaired
,”
ASME J. Biomech. Eng.
,
146
(
12
), pp.
1
33
.10.1115/1.4066370
13.
Patane
,
F.
,
Rossi
,
S.
,
Del Sette
,
F.
,
Taborri
,
J.
, and
Cappa
,
P.
,
2017
, “
WAKE-Up Exoskeleton to Assist Children With Cerebral Palsy: Design and Preliminary Evaluation in Level Walking
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
7
), pp.
906
916
.10.1109/TNSRE.2017.2651404
14.
Cherni
,
Y.
,
Girardin-Vignola
,
G.
,
Ballaz
,
L.
, and
Begon
,
M.
,
2019
, “
Reliability of Maximum Isometric Hip and Knee Torque Measurements in Children With Cerebral Palsy Using a Paediatric Exoskeleton—Lokomat
,”
Neurophysiol. Clin.
,
49
(
4
), pp.
335
342
.10.1016/j.neucli.2018.12.001
15.
Kuroda
,
M. M.
,
Iwasaki
,
N.
,
Mutsuzaki
,
H.
,
Yoshikawa
,
K.
,
Takahashi
,
K.
,
Nakayama
,
T.
,
Nakayama
,
J.
, et al.,
2023
, “
Benefits of a Wearable Cyborg HAL (Hybrid Assistive Limb) in Patients With Childhood-Onset Motor Disabilities: A 1-Year Follow-Up Study
,”
Pediatr. Rep.
,
15
(
1
), pp.
215
226
.10.3390/pediatric15010017
16.
Laubscher
,
C. A.
,
Farris
,
R. J.
,
van den Bogert
,
A. J.
, and
Sawicki
,
J. T.
,
2021
, “
An Anthropometrically Parameterized Assistive Lower Limb Exoskeleton
,”
ASME J. Biomech. Eng.
,
143
(
10
), p.
105001
.10.1115/1.4051214
17.
Goo
,
A.
,
Laubscher
,
C. A.
,
Farris
,
R. J.
, and
Sawicki
,
J. T.
,
2020
, “
Design and Evaluation of a Pediatric Lower-Limb Exoskeleton Joint Actuator
,”
Actuators
,
9
(
4
), p.
138
.10.3390/act9040138
18.
Eguren
,
D.
,
Cestari
,
M.
,
Luu
,
T. P.
,
Kilicarslan
,
A.
,
Steele
,
A.
, and
Contreras-Vidal
,
J. L.
,
2019
, “
Design of a Customizable, Modular Pediatric Exoskeleton for Rehabilitation and Mobility
,” 2019 IEEE International Conference on Systems, Man and Cybernetics (
SMC
), Bari, Italy, Oct. 6--9, pp.
2411
2416
.10.1109/SMC.2019.8914629
19.
Sancho-Perez
,
J.
,
Perez
,
M.
,
Garcia
,
E.
,
Sanz-Merodio
,
D.
,
Plaza
,
A.
, and
Cestari
,
M.
,
2016
, “
Mechanical Description of ATLAS 2020, a 10-DOF Paediatric Exoskeleton
,” 19th
International Conference on CLAWAR
, London, UK, Sept. 12--14, pp. 814--822.10.1142/9789813149137_0095
20.
Sawicki
,
J. T.
,
Wiebrecht
,
J. J.
,
Laubscher
,
C. A.
,
Goo
,
A. C.
,
Farris
,
R. J.
, and
Etheridge
,
S. J.-S.
,
2024
, “
Adjustability Mechanism for Lower Limb Orthosis
,” U.S. Patent Application Publication No. US2024/0173158 A1.
21.
Goo
,
A. C.
,
Wiebrecht
,
J. J.
,
Wajda
,
D. A.
, and
Sawicki
,
J. T.
,
2023
, “
Human Factors Assessment of a Novel Pediatric Lower-Limb Exoskeleton
,”
Robotics
,
12
(
1
), p.
26
.10.3390/robotics12010026
22.
Xiong
,
H.
, and
Diao
,
X.
,
2020
, “
A Review of Cable-Driven Rehabilitation Devices
,”
Disabil. Rehabil. Assist. Technol.
,
15
(
8
), pp.
885
897
.10.1080/17483107.2019.1629110
23.
Wang
,
Y.
,
Wang
,
K.
,
Zhang
,
Z.
, and
Mo
,
Z.
,
2021
, “
Control Strategy and Experimental Research of a Cable-Driven Lower Limb Rehabilitation Robot
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
235
(
13
), pp.
2468
2481
.10.1177/0954406220952510
24.
Wu
,
M.
,
Hornby
,
T. G.
,
Landry
,
J. M.
,
Roth
,
H.
, and
Schmit
,
B. D.
,
2011
, “
A Cable-Driven Locomotor Training System for Restoration of Gait in Human SCI
,”
Gait Posture
,
33
(
2
), pp.
256
260
.10.1016/j.gaitpost.2010.11.016
25.
Hidayah
,
R.
,
Jin
,
X.
,
Chamarthy
,
S.
,
Fitzgerald
,
M. M.
, and
Agrawal
,
S. K.
,
2018
, “
Comparing the Performance of a Cable-Driven Active Leg Exoskeleton (C-ALEX) Over-Ground and on a Treadmill
,”
2018 Seventh IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)
, Enschede, The Netherlands, Aug. 26--29, pp.
299
304
.10.1109/BIOROB.2018.8487771
26.
Lerner
,
Z. F.
,
Gasparri
,
G. M.
,
Bair
,
M. O.
,
Lawson
,
J. L.
,
Luque
,
J.
,
Harvey
,
T. A.
, and
Lerner
,
A. T.
,
2018
, “
An Untethered Ankle Exoskeleton Improves Walking Economy in a Pilot Study of Individuals With Cerebral Palsy
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
10
), pp.
1985
1993
.10.1109/TNSRE.2018.2870756
27.
Walsh
,
C. J.
,
Asbeck
,
A. T.
,
Yarri
,
M. W.
,
Cochran
,
J. C.
, and
De Rossi
,
S. M. M.
,
2020
, “
Orthopedic Device Including Protruding Members
,” U.S. Patent No. 10,864,100 B2.
28.
Lee
,
Y.
,
Kim
,
Y.-J.
,
Lee
,
J.
,
Lee
,
M.
,
Choi
,
B.
,
Kim
,
J.
,
Park
,
Y. J.
, and
Choi
,
J.
,
2017
, “
Biomechanical Design of a Novel Flexible Exoskeleton for Lower Extremities
,”
IEEE/ASME Trans. Mechatron.
,
22
(
5
), pp.
2058
2069
.10.1109/TMECH.2017.2718999
29.
Walsh
,
C. J.
,
Asbeck
,
A. T.
,
Ding
,
Y.
,
Bujanda
,
G.
,
D.
, and
Rossi
,
S. M. M.
,
2020
, “
Soft Exosuit for Assistance With Human Motion
,” U.S. Patent No. 10,843,332 B2.
30.
Sloot
,
L.
,
Bae
,
J.
,
Baker
,
L.
,
O'Donnell
,
K.
,
Menard
,
N.
,
Porciuncula
,
F.
,
Choe
,
D.
,
Ellis
,
T.
,
Awad
,
L.
, and
Walsh
,
C.
,
2022
, “
O 089—A Soft Robotic Exosuit Assisting the Paretic Ankle in Patients Post-Stroke: Effect on Muscle Activation During Overground Walking
,”
Gait Posture
,
95
, pp.
217
218
.10.1016/j.gaitpost.2018.06.124
31.
Kim
,
J.
,
Lee
,
G.
,
Heimgartner
,
R.
,
Arumukhom Revi
,
D.
,
Karavas
,
N.
,
Nathanson
,
D.
,
Galiana
,
I.
, et al.,
2019
, “
Reducing the Metabolic Rate of Walking and Running With a Versatile, Portable Exosuit
,”
Science
,
365
(
6454
), pp.
668
672
.10.1126/science.aav7536
32.
Goodway
,
J. D.
,
Ozmun
,
J. C.
, and
Gallahue
,
D. L.
,
2019
,
Understanding Motor Development: Infants, Children, Adolescents, Adults
,
Jones & Bartlett Learning
,
Burlington, MA
.
33.
Fryar
,
C.
,
Carroll
,
M.
,
Gu
,
Q.
,
Afful
,
J.
, and
Ogden
,
C.
,
2021
, “
Anthropometric Reference Data for Children and Adults: United States, 2015–2018
,” National Center for Health Statistics, Hyattsville, MD, accessed July 6, 2024, https://www.cdc.gov/nchs/products/index.htm
34.
Rodríguez-Fernández
,
A.
,
Lobo-Prat
,
J.
, and
Font-Llagunes
,
J. M.
,
2021
, “
Systematic Review on Wearable Lower-Limb Exoskeletons for Gait Training in Neuromuscular Impairments
,”
J. NeuroEng. Rehabil.
,
18
(
1
), p.
22
.10.1186/s12984-021-00815-5
35.
Winter
,
D. A.
,
1987
,
The Biomechanics and Motor Control of Human Gait
,
University of Waterloo Press
,
Waterloo, ON, Canada
.
36.
Lythgo
,
N.
,
Wilson
,
C.
, and
Galea
,
M.
,
2009
, “
Basic Gait and Symmetry Measures for Primary School-Aged Children and Young Adults Whilst Walking Barefoot and With Shoes
,”
Gait Posture
,
30
(
4
), pp.
502
506
.10.1016/j.gaitpost.2009.07.119
37.
Laschowski
,
B.
, and
McPhee
,
J.
,
2023
, “
Energy-Efficient Actuator Design Principles for Robotic Leg Prostheses and Exoskeletons: A Review of Series Elasticity and Backdrivability
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
6
), p.
060801
.10.1115/1.4056919
38.
U.S. Department of Defense
,
1995
, “
Human Engineering Design Guidelines (MIL-HDBK-759C)
,” Navy Publishing and Printing Office, Philadelphia, PA, accessed July 10, 2024, https://quicksearch.dla.mil/qsDocDetails.aspx?ident_number=54086
39.
Bridger
,
R. S.
,
2009
,
Introduction to Ergonomics
,
CRC Press
,
Boca Raton, FL
.
40.
NASA,
1995
, “
NASA-STD-3000, Volume I, Section 3: Anthropometry and Biomechanics
,” National Aeronautics and Space Administration, Houston, TX, accessed Aug. 3, 2024, https://msis.jsc.nasa.gov/
41.
Chen
,
D.
,
Yun
,
Y.
, and
Deshpande
,
A. D.
,
2014
, “
Experimental Characterization of Bowden Cable Friction
,” 2014 IEEE International Conference on Robotics and Automation (
ICRA
), Hong Kong, China, May 31--June 7, pp.
5927
5933
.10.1109/ICRA.2014.6907732
42.
Wiebrecht
,
J. J.
,
Strick
,
J. A.
,
Farris
,
R. J.
, and
Sawicki
,
J. T.
,
2024
, “
Preliminary Experimental Validation of a Cable-Driven Joint System for Custom Orthoses
,” 2024 IEEE Engineering in Medicine and Biology Society (
EMBC
), Orlando, FL, July 15--19, pp. 1--4.10.1109/EMBC53108.2024.10782083
43.
Zhang
,
Q.
,
Sun
,
D.
,
Qian
,
W.
,
Xiao
,
X.
, and
Guo
,
Z.
,
2020
, “
Modeling and Control of a Cable-Driven Rotary Series Elastic Actuator for an Upper Limb Rehabilitation Robot
,”
Front. Neurorob.
,
14
, p.
13
.10.3389/fnbot.2020.00013
44.
Wang
,
Z.
,
Rho
,
S.
,
Yang
,
C.
,
Jiang
,
F.
,
Ding
,
Z.
,
Yi
,
C.
, and
Wei
,
B.
,
2021
, “
Active Loading Control Design for a Wearable Exoskeleton With a Bowden Cable for Transmission
,”
Actuators
,
10
(
6
), p.
108
.10.3390/act10060108
45.
Dežman
,
M.
,
Asfour
,
T.
,
Ude
,
A.
, and
Gams
,
A.
,
2022
, “
Mechanical Design and Friction Modelling of a Cable-Driven Upper-Limb Exoskeleton
,”
Mech. Mach. Theory
,
171
, p.
104746
.10.1016/j.mechmachtheory.2022.104746
46.
Olsson
,
H.
,
Åström
,
K. J.
,
Canudas De Wit
,
C.
,
Gäfvert
,
M.
, and
Lischinsky
,
P.
,
1998
, “
Friction Models and Friction Compensation
,”
Eur. J. Control
,
4
(
3
), pp.
176
195
.10.1016/S0947-3580(98)70113-X
47.
Hasan
,
S.
, and
Dhingra
,
A. K.
,
2021
, “
Development of a Model Reference Computed Torque Controller for a Human Lower Extremity Exoskeleton Robot
,”
J. Syst. Control Eng.
,
235
(
9
), pp.
1615
1637
.10.1177/09596518211009032
48.
Brændvik
,
S. M.
,
Goihl
,
T.
,
Braaten
,
R. S.
, and
Vereijken
,
B.
,
2020
, “
The Effect of Increased Gait Speed on Asymmetry and Variability in Children With Cerebral Palsy
,”
Front. Neurol.
,
10
, p.
1399
.10.3389/fneur.2019.01399
49.
Schwartz
,
M. H.
,
Rozumalski
,
A.
, and
Trost
,
J. P.
,
2008
, “
The Effect of Walking Speed on the Gait of Typically Developing Children
,”
J. Biomech.
,
41
(
8
), pp.
1639
1650
.10.1016/j.jbiomech.2008.03.015
50.
Baud
,
R.
,
Manzoori
,
A. R.
,
Ijspeert
,
A.
, and
Bouri
,
M.
,
2021
, “
Review of Control Strategies for Lower-Limb Exoskeletons to Assist Gait
,”
J. NeuroEng. Rehabil
,
18
(
1
), p.
119
.10.1186/s12984-021-00906-3
51.
Wiebrecht
,
J. J.
,
Strick
,
J. A.
,
Goo
,
A.
, and
Sawicki
,
J. T.
,
2023
, “
Model-Based Assist-as-Needed Control on a Provisional Pediatric Lower-Limb Orthosis
,”
ASME
Paper No. IMECE2023-109505.10.1115/IMECE2023-109505
52.
Sawicki
,
J. T.
,
Wiebrecht
,
J. J.
,
Strick
,
J. J.
, and
Farris
,
R. J.
,
2025
, “
Attachment Mechanism for Powered Lower Limb Orthoses
,” U.S. Patent Application Pending.
53.
Strick
,
J. A.
,
Farris
,
R. J.
, and
Sawicki
,
J. T.
,
2024
, “
A Novel Gait Event Detection Algorithm Using a Thigh-Worn Inertial Measurement Unit and Joint Angle Information
,”
ASME J. Biomech. Eng.
,
146
(
4
), p.
044502
.10.1115/1.4064435
54.
Strick
,
J. A.
,
Wiebrecht
,
J. J.
,
Farris
,
R. J.
, and
Sawicki
,
J. T.
,
2025
, “
Real-Time Experimental Validation of an Adaptive Gait Event Detection Algorithm
,”
IEEE Sens. J.
, p.
1
.10.1109/JSEN.2025.3546182
You do not currently have access to this content.