Abstract

Multiscale coupling between cell-scale biology and tissue-scale mechanics is a promising approach for modeling disease growth. In such models, tissue-level growth and remodeling (G&R) are driven by cell-level signaling pathways and systems biology models, where each model operates at different scales. Herein, we generate multiscale G&R models to capture the associated multiscale connections. At the cell-scale, we consider systems biology models in the form of systems of ordinary differential equations (ODEs) and partial differential equations (PDEs) representing the reactions between the biochemicals causing the growth based on mass-action or logic-based Hill-type kinetics. At the tissue-scale, we employ kinematic growth in continuum frameworks. Two illustrative test problems (a tissue graft and aneurysm growth) are examined with various chemical signaling networks, boundary conditions, and mechano-chemical coupling strategies. We extend two open-source software frameworks—febio and fenics—to disseminate examples of multiscale growth and remodeling simulations. One-way and two-way coupling between the systems biology and the growth models are compared and the effect of biochemical diffusivity and ODE versus PDE-based systems biology modeling on the G&R results are studied. The results show that growth patterns emerge from reactions between biochemicals, the choice between ODEs and PDEs systems biology modeling, and the coupling strategy. Cross-verification confirms that results for febio and fenics are nearly identical. We hope that these open-source tools will support reproducibility and education within the biomechanics community.

References

1.
Ambrosi
,
D.
,
Ateshian
,
G. A.
,
Arruda
,
E. M.
,
Cowin
,
S. C.
,
Dumais
,
J.
,
Goriely
,
A.
,
Holzapfel
,
G. A.
, et al.,
2011
, “
Perspectives on Biological Growth and Remodeling
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
863
883
.10.1016/j.jmps.2010.12.011
2.
Irons
,
L.
,
Latorre
,
M.
, and
Humphrey
,
J. D.
,
2021
, “
From Transcript to Tissue: Multiscale Modeling From Cell Signaling to Matrix Remodeling
,”
Ann. Biomed. Eng.
,
49
(
7
), pp.
1701
1715
.10.1007/s10439-020-02713-8
3.
Carlier
,
A.
,
Geris
,
L.
,
Lammens
,
J.
, and
Van Oosterwyck
,
H.
,
2015
, “
Bringing Computational Models of Bone Regeneration to the Clinic
,”
WIREs Syst. Biol. Med.
,
7
(
4
), pp.
183
194
.10.1002/wsbm.1299
4.
Carlier
,
A.
,
Lammens
,
J.
,
Van Oosterwyck
,
H.
, and
Geris
,
L.
,
2015
, “
Computational Modeling of Bone Fracture Non-Unions: Four Clinically Relevant Case Studies
,”
Silico Cell Tissue Sci.
,
2
(
1
), pp. 1–12.10.1186/s40482-015-0004-x
5.
Guo
,
Y.
,
Mofrad
,
M. R. K.
, and
Tepole
,
A. B.
,
2022
, “
On Modeling the Multiscale Mechanobiology of Soft Tissues: Challenges and Progress
,”
Biophys. Rev.
,
3
(
3
), p. 031303.10.1063/5.0085025
6.
Skalak
,
R.
,
Dasgupta
,
G.
,
Moss
,
M.
,
Otten
,
E.
,
Dullemeijer
,
P.
, and
Vilmann
,
H.
,
1982
, “
Analytical Description of Growth
,”
J. Theor. Biol.
,
94
(
3
), pp.
555
577
.10.1016/0022-5193(82)90301-0
7.
Skalak
,
R.
,
1981
,
Growth as a Finite Displacement Field
,
Springer, The Netherlands
, pp.
347
355
.
8.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
,
1994
, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
(
4
), pp.
455
467
.10.1016/0021-9290(94)90021-3
9.
Humphrey
,
J.
, and
Rajagopal
,
K.
,
2002
, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Models Methods Appl. Sci.
,
12
(
3
), pp.
407
430
.10.1142/S0218202502001714
10.
Ateshian
,
G. A.
, and
Humphrey
,
J. D.
,
2012
, “
Continuum Mixture Models of Biological Growth and Remodeling: Past Successes and Future Opportunities
,”
Annu. Rev. Biomed. Eng.
,
14
(
1
), pp.
97
111
.10.1146/annurev-bioeng-071910-124726
11.
Ashrafi
,
M.
,
Gubaua
,
J. E.
,
Pereira
,
J. T.
,
Gahlichi
,
F.
, and
Doblaré
,
M.
,
2020
, “
A Mechano-Chemo-Biological Model for Bone Remodeling With a New Mechano-Chemo-Transduction Approach
,”
Biomech. Model. Mechanobiol.
,
19
(
6
), pp.
2499
2523
.10.1007/s10237-020-01353-0
12.
Irons
,
L.
, and
Humphrey
,
J. D.
,
2020
, “
Cell Signaling Model for Arterial Mechanobiology
,”
PLoS Comput. Biol.
,
16
(
8
), p.
e1008161
.10.1371/journal.pcbi.1008161
13.
Kim
,
J.
, and
Wagenseil
,
J. E.
,
2015
, “
Bio-Chemo-Mechanical Models of Vascular Mechanics
,”
Ann. Biomed. Eng.
,
43
(
7
), pp.
1477
1487
.10.1007/s10439-014-1201-7
14.
Sadrabadi
,
M. S.
,
Eskandari
,
M.
,
Feigenbaum
,
H. P.
, and
Arzani
,
A.
,
2021
, “
Local and Global Growth and Remodeling in Calcific Aortic Valve Disease and Aging
,”
J. Biomech.
,
128
,p.
110773
.10.1016/j.jbiomech.2021.110773
15.
Zeigler
,
A.
,
Richardson
,
W.
,
Holmes
,
J.
, and
Saucerman
,
J.
,
2016
, “
A Computational Model of Cardiac Fibroblast Signaling Predicts Context-Dependent Drivers of Myofibroblast Differentiation
,”
J. Mol. Cell. Cardiol.
,
94
, pp.
72
81
.10.1016/j.yjmcc.2016.03.008
16.
Humphrey
,
J. D.
,
Dufresne
,
E. R.
, and
Schwartz
,
M. A.
,
2014
, “
Mechanotransduction and Extracellular Matrix Homeostasis
,”
Nat. Rev. Mol. Cell Biol.
,
15
(
12
), pp.
802
812
.10.1038/nrm3896
17.
Loerakker
,
S.
, and
Ristori
,
T.
,
2020
, “
Computational Modeling for Cardiovascular Tissue Engineering: The Importance of Including Cell Behavior in Growth and Remodeling Algorithms
,”
Curr. Opin. Biomed. Eng.
,
15
, pp.
1
9
.10.1016/j.cobme.2019.12.007
18.
Sree
,
V. D.
, and
Tepole
,
A. B.
,
2020
, “
Computational Systems Mechanobiology of Growth and Remodeling: Integration of Tissue Mechanics and Cell Regulatory Network Dynamics
,”
Curr. Opin. Biomed. Eng.
,
15
, pp.
75
80
.10.1016/j.cobme.2020.01.002
19.
Hahn
,
C.
, and
Schwartz
,
M. A.
,
2009
, “
Mechanotransduction in Vascular Physiology and Atherogenesis
,”
Nat. Rev. Mol. Cell Biol.
,
10
(
1
), pp.
53
62
.10.1038/nrm2596
20.
Freedman
,
B. R.
,
Bade
,
N. D.
,
Riggin
,
C. N.
,
Zhang
,
S.
,
Haines
,
P. G.
,
Ong
,
K. L.
, and
Janmey
,
P. A.
,
2015
, “
The (Dys) Functional Extracellular Matrix
,”
Biochim. Biophys. Acta (BBA)-Mol. Cell Res.
,
1853
(
11 Pt B
), pp.
3153
3164
.10.1016/j.bbamcr.2015.04.015
21.
Sagi
,
I.
, and
Gaffney
,
J.
,
2015
,
Matrix Metalloproteinase Biology
,
Wiley, Hoboken, NJ
.
22.
Sugita
,
S.
, and
Matsumoto
,
T.
,
2017
, “
Multiphoton Microscopy Observations of 3D Elastin and Collagen Fiber Microstructure Changes During Pressurization in Aortic Media
,”
Biomech. Model. Mechanobiol.
,
16
(
3
), pp.
763
773
.10.1007/s10237-016-0851-9
23.
Yoshida
,
K.
,
McCulloch
,
A. D.
,
Omens
,
J. H.
, and
Holmes
,
J. W.
,
2020
, “
Predictions of Hypertrophy and Its Regression in Response to Pressure Overload
,”
Biomech. Model. Mechanobiol.
,
19
(
3
), pp.
1079
1089
.10.1007/s10237-019-01271-w
24.
Hayenga
,
H. N.
,
Thorne
,
B. C.
,
Peirce
,
S. M.
, and
Humphrey
,
J. D.
,
2011
, “
Ensuring Congruency in Multiscale Modeling: Towards Linking Agent Based and Continuum Biomechanical Models of Arterial Adaptation
,”
Ann. Biomed. Eng.
,
39
(
11
), pp.
2669
2682
.10.1007/s10439-011-0363-9
25.
Pivonka
,
P.
,
Zimak
,
J.
,
Smith
,
D. W.
,
Gardiner
,
B. S.
,
Dunstan
,
C. R.
,
Sims
,
N. A.
,
Martin
,
T. J.
, and
Mundy
,
G. R.
,
2008
, “
Model Structure and Control of Bone Remodeling: A Theoretical Study
,”
Bone
,
43
(
2
), pp.
249
263
.10.1016/j.bone.2008.03.025
26.
Rouhi
,
G.
,
Epstein
,
M.
,
Sudak
,
L.
, and
Herzog
,
W.
,
2007
, “
Modeling Bone Resorption Using Mixture Theory With Chemical Reactions
,”
J. Mech. Mater. Struct.
,
2
(
6
), pp.
1141
1155
.10.2140/jomms.2007.2.1141
27.
Schäfer
,
A.
,
Weickenmeier
,
J.
, and
Kuhl
,
E.
,
2019
, “
The Interplay of Biochemical and Biomechanical Degeneration in Alzheimer's Disease
,”
Comput. Methods Appl. Mech. Eng.
,
352
, pp.
369
388
.10.1016/j.cma.2019.04.028
28.
Peirce-Cottler
,
S. M.
,
Sander
,
E. A.
,
Fisher
,
M. B.
,
Deymier
,
A. C.
,
LaDisa
,
J. F.
Jr.
,
O'Connell
,
G.
,
Corr
,
D. T.
, et al.,
2024
, “
A Systems Approach to Biomechanics, Mechanobiology, and Biotransport
,”
ASME J. Biomech. Eng.
,
146
(
4
), p. 040801.10.1115/1.4064547
29.
Maas
,
S.
,
Ellis
,
B. J.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2012
, “
Febio: Finite Elements for Biomechanics
,”
ASME J. Biomech. Eng.
,
134
(
1
), p. 011005.10.1115/1.4005694
30.
Logg
,
A.
,
Wells
,
G. N.
, and
Hake
,
J.
,
2012
, “
DOLFIN: A C++/Python Finite Element Library
,”
Computational Science and Engineering
(Lecture Notes in chapter 10), Vol.
84
,
Springer
, Berlin Heidelberg, pp.
173
225
.
31.
Maas
,
S. A.
,
LaBelle
,
S. A.
,
Ateshian
,
G. A.
, and
Weiss
,
J. A.
,
2018
, “
A Plugin Framework for Extending the Simulation Capabilities of Febio
,”
Biophys. J.
,
115
(
9
), pp.
1630
1637
.10.1016/j.bpj.2018.09.016
32.
Estrada
,
A. C.
,
Yoshida
,
K.
,
Saucerman
,
J. J.
, and
Holmes
,
J. W.
,
2021
, “
A Multiscale Model of Cardiac Concentric Hypertrophy Incorporating Both Mechanical and Hormonal Drivers of Growth
,”
Biomech. Model. Mechanobiol.
,
20
(
1
), pp.
293
307
.10.1007/s10237-020-01385-6
33.
Senthilnathan
,
C.
,
2024
, “
Understanding the Mechanics of Growth: A Large Deformation Theory for Coupled Swelling-Growth and Morphogenesis of Soft Biological Systems
,” Ph.D. thesis,
Massachusetts Institute of Technology, Cambridge, MA
.
34.
Eskandari
,
M.
, and
Kuhl
,
E.
,
2015
, “
Systems Biology and Mechanics of Growth
,”
Wiley Interdiscip. Rev. Syst. Biol. Med.
,
7
(
6
), pp.
401
412
.10.1002/wsbm.1312
35.
Göktepe
,
S.
,
Abilez
,
O. J.
,
Parker
,
K. K.
, and
Kuhl
,
E.
,
2010
, “
A Multiscale Model for Eccentric and Concentric Cardiac Growth Through Sarcomerogenesis
,”
J. Theor. Biol.
,
265
(
3
), pp.
433
442
.10.1016/j.jtbi.2010.04.023
36.
Menzel
,
A.
,
2005
, “
Modelling of Anisotropic Growth in Biological Tissues
,”
Biomech. Model. Mechanobiol.
,
3
(
3
), pp.
147
171
.10.1007/s10237-004-0047-6
37.
Göktepe
,
S.
,
Abilez
,
O. J.
, and
Kuhl
,
E.
,
2010
, “
A Generic Approach Towards Finite Growth With Examples of Athlete's Heart, Cardiac Dilation, and Cardiac Wall Thickening
,”
J. Mech. Phys. Solids
,
58
(
10
), pp.
1661
1680
.
38.
Rausch
,
M.
,
Dam
,
A.
,
Göktepe
,
S.
,
Abilez
,
O.
, and
Kuhl
,
E.
,
2011
, “
Computational Modeling of Growth: Systemic and Pulmonary Hypertension in the Heart
,”
Biomech. Model. Mechanobiol.
,
10
(
6
), pp.
799
811
.10.1007/s10237-010-0275-x
39.
Ambrosi
,
D.
,
Ben Amar
,
M.
,
Cyron
,
C. J.
,
DeSimone
,
A.
,
Goriely
,
A.
,
Humphrey
,
J. D.
, and
Kuhl
,
E.
,
2019
, “
Growth and Remodelling of Living Tissues: Perspectives, Challenges and Opportunities
,”
J. R. Soc. Interface
,
16
(
157
), p.
20190233
.10.1098/rsif.2019.0233
40.
Ateshian
,
G. A.
,
LaBelle
,
S. A.
, and
Weiss
,
J. A.
,
2024
, “
Continuum Growth Mechanics: Reconciling Two Common Frameworks
,”
ASME J. Biomech. Eng.
,
146
(
10
), p.
101003
.10.1115/1.4065309
41.
Ateshian
,
G. A.
,
Nims
,
R. J.
,
Maas
,
S. A.
, and
Weiss
,
J. A.
,
2014
, “
Computational Modeling of Chemical Reactions and Interstitial Growth and Remodeling Involving Charged Solutes and Solid-Bound Molecules
,”
Biomech. Model. Mechanobiol.
,
13
(
5
), pp.
1105
1120
.10.1007/s10237-014-0560-1
42.
Prud'homme
,
R.
,
2010
, “
Flows Reactive Fluids
,”
94
, Springer, New York.
43.
Menzel
,
A.
, and
Kuhl
,
E.
,
2012
, “
Frontiers in Growth and Remodeling
,”
Mech. Res. Commun.
,
42
, pp.
1
14
.10.1016/j.mechrescom.2012.02.007
44.
Cyron
,
C. J.
,
Aydin
,
R. C.
, and
Humphrey
,
J. D.
,
2016
, “
A Homogenized Constrained Mixture (and Mechanical Analog) Model for Growth and Remodeling of Soft Tissue
,”
Biomech. Model. Mechanobiol.
,
15
(
6
), pp.
1389
1403
.10.1007/s10237-016-0770-9
45.
Kuhl
,
E.
,
Maas
,
R.
,
Himpel
,
G.
, and
Menzel
,
A.
,
2007
, “
Computational Modeling of Arterial Wall Growth. Attempts Towards Patient-Specific Simulations Based on Computer Tomography
,”
Biomech. Model. Mechanobiol.
,
6
(
5
), pp.
321
331
.10.1007/s10237-006-0062-x
46.
Sheth
,
R. A.
,
Maricevich
,
M.
, and
Mahmood
,
U.
,
2010
, “
In Vivo Optical Molecular Imaging of Matrix Metalloproteinase Activity in Abdominal Aortic Aneurysms Correlates With Treatment Effects on Growth Rate
,”
Atherosclerosis
,
212
(
1
), pp.
181
187
.10.1016/j.atherosclerosis.2010.05.012
47.
Gierig
,
M.
,
Wriggers
,
P.
, and
Marino
,
M.
,
2021
, “
Computational Model of Damage-Induced Growth in Soft Biological Tissues Considering the Mechanobiology of Healing
,”
Biomech. Model. Mechanobiol.
,
20
(
4
), pp.
1297
1315
.10.1007/s10237-021-01445-5
48.
Marino
,
M.
,
Pontrelli
,
G.
,
Vairo
,
G.
, and
Wriggers
,
P.
,
2017
, “
Chapter 4 - Coupling Microscale Transport and Tissue Mechanics: Modeling Strategies for Arterial Multiphysics
,”
Modeling of Microscale Transport in Biological Processes
,
S. M.
Becker
, ed.,
Academic Press
, Cambridge, MA, pp.
77
112
.
49.
Marino
,
M.
,
Pontrelli
,
G.
,
Vairo
,
G.
, and
Wriggers
,
P.
,
2017
, “
A Chemo-Mechano-Biological Formulation for the Effects of Biochemical Alterations on Arterial Mechanics: The Role of Molecular Transport and Multiscale Tissue Remodelling
,”
J. R. Soc. Interface
,
14
(
136
), p.
20170615
.10.1098/rsif.2017.0615
50.
Tan
,
P. M.
,
Buchholz
,
K. S.
,
Omens
,
J. H.
,
McCulloch
,
A. D.
, and
Saucerman
,
J. J.
,
2017
, “
Predictive Model Identifies Key Network Regulators of Cardiomyocyte Mechano-Signaling
,”
PLoS Comput. Biol.
,
13
(
11
), p.
e1005854
.10.1371/journal.pcbi.1005854
51.
Taber
,
L. A.
,
1995
, “
Biomechanics of Growth, Remodeling, and Morphogenesis
,”
ASME Appl. Mech. Rev.
,
48
(
8
), pp.
487
545
.10.1115/1.3005109
52.
Kerckhoffs
,
R. C. P.
,
Omens
,
J. H.
, and
McCulloch
,
A. D.
,
2012
, “
A Single Strain-Based Growth Law Predicts Concentric and Eccentric Cardiac Growth During Pressure and Volume Overload
,”
Mech. Res. Commun.
,
42
, pp.
40
50
.10.1016/j.mechrescom.2011.11.004
53.
Schwarz
,
E. L.
,
Pfaller
,
M. R.
,
Szafron
,
J. M.
,
Latorre
,
M.
,
Lindsey
,
S. E.
,
Breuer
,
C. K.
,
Humphrey
,
J. D.
, and
Marsden
,
A. L.
,
2023
, “
A Fluid–Solid-Growth Solver for Cardiovascular Modeling
,”
Comput. Methods Appl. Mech. Eng.
,
417
, p.
116312
.10.1016/j.cma.2023.116312
54.
Teixeira
,
F. S.
,
Neufeld
,
E.
,
Kuster
,
N.
, and
Watton
,
P. N.
,
2020
, “
Modeling Intracranial Aneurysm Stability and Growth: An Integrative Mechanobiological Framework for Clinical Cases
,”
Biomech. Model. Mechanobiol.
,
19
(
6
), pp.
2413
2431
.10.1007/s10237-020-01351-2
55.
Keshavarzian
,
M.
,
Meyer
,
C. A.
, and
Hayenga
,
H. N.
,
2018
, “
Mechanobiological Model of Arterial Growth and Remodeling
,”
Biomech. Model. Mechanobiol.
,
17
(
1
), pp.
87
101
.10.1007/s10237-017-0946-y
56.
Scheiner
,
S.
,
Pivonka
,
P.
, and
Hellmich
,
C.
,
2013
, “
Coupling Systems Biology With Multiscale Mechanics, for Computer Simulations of Bone Remodeling
,”
Comput. Methods Appl. Mech. Eng.
,
254
, pp.
181
196
.10.1016/j.cma.2012.10.015
57.
Latorre
,
M.
, and
Humphrey
,
J. D.
,
2020
, “
Fast, Rate-Independent, Finite Element Implementation of a 3D Constrained Mixture Model of Soft Tissue Growth and Remodeling
,”
Comput. Methods Appl. Mech. Eng.
,
368
, p.
113156
.10.1016/j.cma.2020.113156
58.
Ambrosi
,
D.
,
Pezzuto
,
S.
,
Riccobelli
,
D.
,
Stylianopoulos
,
T.
, and
Ciarletta
,
P.
,
2017
, “
Solid Tumors Are Poroelastic Solids With a Chemo-Mechanical Feedback on Growth
,”
J. Elast.
,
129
(
1–2
), pp.
107
124
.10.1007/s10659-016-9619-9
59.
Paukner
,
D.
,
Humphrey
,
J. D.
, and
Cyron
,
C. J.
,
2024
, “
Multiscale Homogenized Constrained Mixture Model of the Bio-Chemo-Mechanics of Soft Tissue Growth and Remodeling
,”
Biomech. Model. Mechanobiol.
,
23
(
6
), pp.
2115
2136
.10.1007/s10237-024-01884-w
60.
Soleimani
,
M.
,
Muthyala
,
N.
,
Marino
,
M.
, and
Wriggers
,
P.
,
2020
, “
A Novel Stress-Induced Anisotropic Growth Model Driven by Nutrient Diffusion: Theory, FEM Implementation and Applications in Bio-Mechanical Problems
,”
J. Mech. Phys. Solids
,
144
, p.
104097
.10.1016/j.jmps.2020.104097
61.
Verner
,
S. N.
, and
Garikipati
,
K.
,
2018
, “
A Computational Study of the Mechanisms of Growth-Driven Folding Patterns on Shells, With Application to the Developing Brain
,”
Ext. Mech. Lett.
,
18
, pp.
58
69
.10.1016/j.eml.2017.11.003
62.
Afshar
,
A.
, and
Di Leo
,
C. V.
,
2021
, “
A Thermodynamically Consistent Gradient Theory for Diffusion–Reaction–Deformation in Solids: Application to Conversion-Type Electrodes
,”
J. Mech. Phys. Solids
,
151
, p.
104368
.10.1016/j.jmps.2021.104368
63.
Chockalingam
,
S.
, and
Cohen
,
T.
,
2024
, “
A Large Deformation Theory for Coupled Swelling and Growth With Application to Growing Tumors and Bacterial Biofilms
,”
J. Mech. Phys. Solids
,
187
, p.
105627
.10.1016/j.jmps.2024.105627
You do not currently have access to this content.