Abstract

Ascending thoracic aortic aneurysms (aTAAs) can lead to life-threatening dissection and rupture. Recent studies have highlighted aTAA mechanical properties as relevant factors associated with progression. The aim of this study was to quantify in vivo aortic wall stretch in healthy participants and aTAA patients using displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging. Moreover, aTAA wall stretch between surgical and nonsurgical patients was investigated. Finally, DENSE measurements were compared to reference-standard mechanical testing on aTAA specimens from surgical repairs. In total, 18 subjects were recruited, six healthy participants and 12 aTAA patients, for this prospective study. Electrocardiogram-gated DENSE imaging was performed to measure systole–diastole wall stretch, as well as the ratio of aTAA stretch to unaffected descending thoracic aorta stretch. Free-breathing and breath-hold DENSE protocols were used. Uniaxial tensile testing-measured indices were correlated to DENSE measurements in five harvested specimens. in vivo aortic wall stretch was significantly lower in aTAA compared to healthy subjects (1.75±1.44% versus 5.28±1.92%, respectively, P = 0.0004). There was no correlation between stretch and maximum aTAA diameter (P = 0.56). The ratio of aTAA to unaffected thoracic aorta wall stretch was significantly lower in surgical candidates compared to nonsurgical candidates (0.993±0.011 versus 1.017±0.016, respectively, P = 0.0442). Finally, in vivo aTAA wall stretch correlated to wall failure stress and peak modulus of the intima (P = 0.017 and P = 0.034, respectively), while the stretch ratio correlated to whole-wall thickness failure stretch and stress (P = 0.013 and P = 0.040, respectively). Aortic DENSE has the potential to assess differences in aTAA mechanical properties and progressions.

References

1.
Davies
,
R. R.
,
Goldstein
,
L. J.
,
Coady
,
M. A.
,
Tittle
,
S. L.
,
Rizzo
,
J. A.
,
Kopf
,
G. S.
, and
Elefteriades
,
J. A.
,
2002
, “
Yearly Rupture or Dissection Rates for Thoracic Aortic Aneurysms: Simple Prediction Based on Size
,”
Ann. Thorac. Surg.
,
73
(
1
), pp.
17
28
.10.1016/S0003-4975(01)03236-2
2.
Pape
,
L. A.
,
Tsai
,
T. T.
,
Isselbacher
,
E. M.
,
Oh
,
J. K.
,
O'Gara
,
P. T.
,
Evangelista
,
A.
,
Fattori
,
R.
, et al.,
2007
, “
Aortic Diameter ≥5.5 cm Is Not a Good Predictor of Type A Aortic Dissection
,”
Circulation
,
116
(
10
), pp.
1120
1127
.10.1161/CIRCULATIONAHA.107.702720
3.
Lindeman
,
J. H. N.
,
Ashcroft
,
B. A.
,
Beenakker
,
J.-W. M.
,
van Es
,
M.
,
Koekkoek
,
N. B. R.
,
Prins
,
F. A.
,
Tielemans
,
J. F.
,
Abdul-Hussien
,
H.
,
Bank
,
R. A.
, and
Oosterkamp
,
T. H.
,
2010
, “
Distinct Defects in Collagen Microarchitecture Underlie Vessel-Wall Failure in Advanced Abdominal Aneurysms and Aneurysms in Marfan Syndrome
,”
Proc. Natl. Acad. Sci.
,
107
(
2
), pp.
862
865
.10.1073/pnas.0910312107
4.
Wisneski
,
A. D.
,
Wang
,
Z.
,
Xuan
,
Y.
,
Ge
,
L.
, and
Tseng
,
E. E.
,
2019
, “
Biomechanics of Ascending Thoracic Aortic Aneurysm: Computational Modeling and Pursuit of Wall Stress Based Rupture Risk
,”
J. Am. Coll. Surg.
,
229
(
4
), pp.
S43
S44
.10.1016/j.jamcollsurg.2019.08.108
5.
Iliopoulos
,
D. C.
,
Kritharis
,
E. P.
,
Giagini
,
A. T.
,
Papadodima
,
S. A.
, and
Sokolis
,
D. P.
,
2009
, “
Ascending Thoracic Aortic Aneurysms Are Associated With Compositional Remodeling and Vessel Stiffening but Not Weakening in Age-Matched Subjects
,”
J. Thorac. Cardiovasc. Surg.
,
137
(
1
), pp.
101
109
.10.1016/j.jtcvs.2008.07.023
6.
Dong
,
H.
,
Russell
,
D. S.
,
Litsky
,
A. S.
,
Joseph
,
M. E.
,
Mo
,
X.
,
White
,
R. D.
, and
Kolipaka
,
A.
,
2020
, “
In Vivo Aortic Magnetic Resonance Elastography in Abdominal Aortic Aneurysm
,”
Invest. Radiol.
,
55
(
7
), pp.
463
472
.10.1097/RLI.0000000000000660
7.
Haraldsson
,
H.
,
Hope
,
M.
,
Acevedo-Bolton
,
G.
,
Tseng
,
E.
,
Zhong
,
X.
,
Epstein
,
F. H.
,
Ge
,
L.
, and
Saloner
,
D.
,
2014
, “
Feasibility of Asymmetric Stretch Assessment in the Ascending Aortic Wall With DENSE Cardiovascular Magnetic Resonance
,”
J. Cardiovasc. Magn. Reson.
,
16
(
1
), p.
6
.10.1186/1532-429X-16-6
8.
Dong
,
H.
,
Mazumder
,
R.
,
Illapani
,
V. S. P.
,
Mo
,
X.
,
White
,
R. D.
, and
Kolipaka
,
A.
,
2017
, “
In Vivo Quantification of Aortic Stiffness Using MR Elastography in Hypertensive Porcine Model
,”
Magn. Reson. Med.
,
78
(
6
), pp.
2315
2321
.10.1002/mrm.26601
9.
Aletras
,
A. H.
,
Ding
,
S.
,
Balaban
,
R. S.
, and
Wen
,
H.
,
1999
, “
DENSE: Displacement Encoding With Stimulated Echoes in Cardiac Functional MRI
,”
J. Magn. Reson.
,
137
(
1
), pp.
247
252
.10.1006/jmre.1998.1676
10.
Zhong
,
X.
,
Spottiswoode
,
B. S.
,
Meyer
,
C. H.
,
Kramer
,
C. M.
, and
Epstein
,
F. H.
,
2010
, “
Imaging Three-Dimensional Myocardial Mechanics Using Navigator-Gated Volumetric Spiral Cine DENSE MRI
,”
Magn. Reson. Med.
,
64
(
4
), pp.
1089
1097
.10.1002/mrm.22503
11.
Mangion
,
K.
,
Carrick
,
D.
,
Carberry
,
J.
,
Mahrous
,
A.
,
McComb
,
C.
,
Oldroyd
,
K. G.
,
Eteiba
,
H.
, et al.,
2019
, “
Circumferential Strain Predicts Major Adverse Cardiovascular Events Following an Acute ST-Segment–Elevation Myocardial Infarction
,”
Radiology
,
290
(
2
), pp.
329
337
.10.1148/radiol.2018181253
12.
Iffrig
,
E.
,
Wilson
,
J. S.
,
Zhong
,
X.
, and
Oshinski
,
J. N.
,
2019
, “
Demonstration of Circumferential Heterogeneity in Displacement and Strain in the Abdominal Aortic Wall by Spiral Cine DENSE MRI
,”
J. Magn. Reson. Imaging
,
49
(
3
), pp.
731
743
.10.1002/jmri.26304
13.
Wilson
,
J. S.
,
Taylor
,
W. R.
, and
Oshinski
,
J.
,
2019
, “
Assessment of the Regional Distribution of Normalized Circumferential Strain in the Thoracic and Abdominal Aorta Using DENSE Cardiovascular Magnetic Resonance
,”
J. Cardiovasc. Magn. Reson.
,
21
(
1
), p.
59
.10.1186/s12968-019-0565-0
14.
Moon-Ho Song
,
S.
,
Napel
,
S.
,
Pelc
,
N. J.
, and
Glover
,
G. H.
,
1995
, “
Phase Unwrapping of MR Phase Images Using Poisson Equation
,”
IEEE Trans. Image Process.
,
4
(
5
), pp.
667
676
.10.1109/83.382500
15.
Azadani
,
A. N.
,
Chitsaz
,
S.
,
Matthews
,
P. B.
,
Jaussaud
,
N.
,
Leung
,
J.
,
Wisneski
,
A.
,
Ge
,
L.
, and
Tseng
,
E. E.
,
2012
, “
Biomechanical Comparison of Human Pulmonary and Aortic Roots
,”
Eur. J. Cardio-Thorac. Surg.
,
41
(
5
), pp.
1111
1116
.10.1093/ejcts/ezr163
16.
Azadani
,
A. N.
,
Chitsaz
,
S.
,
Matthews
,
P. B.
,
Jaussaud
,
N.
,
Leung
,
J.
,
Tsinman
,
T.
,
Ge
,
L.
, and
Tseng
,
E. E.
,
2012
, “
Comparison of Mechanical Properties of Human Ascending Aorta and Aortic Sinuses
,”
Ann. Thorac. Surg.
,
93
(
1
), pp.
87
94
.10.1016/j.athoracsur.2011.08.002
17.
Xuan
,
Y.
,
Wisneski
,
A. D.
,
Wang
,
Z.
,
Lum
,
M.
,
Kumar
,
S.
,
Pallone
,
J.
,
Flores
,
N.
, et al.,
2021
, “
Regional Biomechanical and Failure Properties of Healthy Human Ascending Aorta and Root
,”
J. Mech. Behav. Biomed. Mater.
,
123
, p.
104705
.10.1016/j.jmbbm.2021.104705
18.
Xuan
,
Y.
,
Wang
,
Z.
,
Guccione
,
J. M.
,
Tseng
,
E. E.
, and
Ge
,
L.
,
2023
, “
Regional and Directional Delamination Properties of Healthy Human Ascending Aorta and Sinotubular Junction
,”
J. Mech. Behav. Biomed. Mater.
,
138
, p.
105603
.10.1016/j.jmbbm.2022.105603
19.
Young
,
A. A.
,
Li
,
B.
,
Kirton
,
R. S.
, and
Cowan
,
B. R.
,
2012
, “
Generalized Spatiotemporal Myocardial Strain Analysis for DENSE and SPAMM Imaging
,”
Magn. Reson. Med.
,
67
(
6
), pp.
1590
1599
.10.1002/mrm.23142
20.
Kolipaka
,
A.
,
Illapani
,
V. S. P.
,
Kenyhercz
,
W.
,
Dowell
,
J. D.
,
Go
,
M. R.
,
Starr
,
J. E.
,
Vaccaro
,
P. S.
, and
White
,
R. D.
,
2016
, “
Quantification of Abdominal Aortic Aneurysm Stiffness Using Magnetic Resonance Elastography and Its Comparison to Aneurysm Diameter
,”
J. Vasc. Surg.
,
64
(
4
), pp.
966
974
.10.1016/j.jvs.2016.03.426
21.
Khan
,
S.
,
Fakhouri
,
F.
,
Majeed
,
W.
, and
Kolipaka
,
A.
,
2017
, “
Cardiovascular Magnetic Resonance Elastography: A Review
,”
NMR Biomed.
,
31
(
10
), pp.
1
20
.10.1002/NBM.3853
22.
Dong
,
H.
,
Raterman
,
B.
,
White
,
R. D.
,
Starr
,
J.
,
Vaccaro
,
P.
,
Haurani
,
M.
,
Go
,
M.
,
Eisner
,
M.
,
Brock
,
G.
, and
Kolipaka
,
A.
,
2022
, “
MR Elastography of Abdominal Aortic Aneurysms: Relationship to Aneurysm Events
,”
Radiology
,
304
(
3
), pp.
721
729
.10.1148/radiol.212323
23.
Wang
,
Z.
,
Flores
,
N.
,
Lum
,
M.
,
Wisneski
,
A. D.
,
Xuan
,
Y.
,
Inman
,
J.
,
Hope
,
M. D.
, et al.,
2021
, “
Wall Stress Analyses in Patients With ≥5 cm Versus <5 cm Ascending Thoracic Aortic Aneurysm
,”
J. Thorac. Cardiovasc. Surg.,
162(5), pp.
1452
1459
.10.1016/j.jtcvs.2020.02.046
24.
Li
,
Z.
,
Luo
,
T.
,
Wang
,
S.
,
Jia
,
H.
,
Gong
,
Q.
,
Liu
,
X.
,
Sutcliffe
,
M. P. F.
, et al.,
2022
, “
Mechanical and Histological Characteristics of Aortic Dissection Tissues
,”
Acta Biomater.
,
146
, pp.
284
294
.10.1016/j.actbio.2022.03.042
25.
Li
,
F.
,
Wang
,
S.
,
Gao
,
Q.
,
Chen
,
X.
,
Yin
,
G.
,
Yu
,
C.
,
Wang
,
Y.
, et al.,
2021
, “
Vessel Structural Stress Mediates Aortic Media Degeneration in Bicuspid Aortopathy: New Insights Based on Patient-Specific Fluid-Structure Interaction Analysis
,”
J. Biomech.
,
129
, p.
110805
.10.1016/j.jbiomech.2021.110805
26.
Lee
,
H. Y.
, and
Oh
,
B. H.
,
2010
, “
Aging and Arterial Stiffness
,”
Circ. J.
,
74
(
11
), pp.
2257
2262
.10.1253/circj.CJ-10-0910
27.
Teng
,
Z.
,
Feng
,
J.
,
Zhang
,
Y.
,
Huang
,
Y.
,
Sutcliffe
,
M. P. F.
,
Brown
,
A. J.
,
Jing
,
Z.
,
Gillard
,
J. H.
, and
Lu
,
Q.
,
2015
, “
Layer- and Direction-Specific Material Properties, Extreme Extensibility and Ultimate Material Strength of Human Abdominal Aorta and Aneurysm: A Uniaxial Extension Study
,”
Ann. Biomed. Eng.
,
43
(
11
), pp.
2745
2759
.10.1007/s10439-015-1323-6
28.
Khanafer
,
K.
,
Duprey
,
A.
,
Zainal
,
M.
,
Schlicht
,
M.
,
Williams
,
D.
, and
Berguer
,
R.
,
2011
, “
Determination of the Elastic Modulus of Ascending Thoracic Aortic Aneurysm at Different Ranges of Pressure Using Uniaxial Tensile Testing
,”
J. Thorac. Cardiovasc. Surg.
,
142
(
3
), pp.
682
686
.10.1016/j.jtcvs.2010.09.068
29.
Dong
,
H.
,
Leach
,
J.
,
Zhou
,
A.
,
Ballweber
,
M.
,
Epstein
,
F.
,
Ge
,
L.
,
Tseng
,
E.
,
Saloner
,
D.
, and
Mitsouras
,
D.
,
2023
, “
Imaging Ascending Aortic Wall Stretch Using Breath-Held Displacement Encoding With Stimulated Echoes MRI: An Intra-Scan Reproducibility Study
,”
Annual Meeting of the International Society of Magnetic Resonance in Medicine
, Toronto, ON, Canada, June
3
8
.https://archive.ismrm.org/2023/1513.html
You do not currently have access to this content.