Abstract

This study was undertaken to develop a mathematical model of the long-term in vivo remodeling processes in postimplanted pulmonary artery (PA) conduits. Experimental results from two extant ovine in vivo studies, wherein polyglycolic-acid (PGA)/poly-L-lactic acid tubular conduits were constructed, cell seeded, incubated for 4 weeks, and then implanted in mature sheep to obtain the remodeling data for up to two years. Explanted conduit analysis included detailed novel structural and mechanical studies. Results in both studies indicated that the in vivo conduits remained dimensionally stable up to 80 weeks, so that the conduits maintained a constant in vivo stress and deformation state. In contrast, continued remodeling of the constituent collagen fiber network as evidenced by an increase in effective tissue uniaxial tangent modulus, which then stabilized by one year postimplant. A mesostructural constitute model was then applied to extant planar biaxial mechanical data and revealed several interesting features, including an initial pronounced increase in effective collagen fiber modulus, paralleled by a simultaneous shift toward longer, more uniformly length-distributed collagen fibers. Thus, while the conduit remained dimensionally stable, its internal collagen fibrous structure and resultant mechanical behaviors underwent continued remodeling that stabilized by one year. A time-evolving structural mixture-based mathematical model specialized for this unique form of tissue remodeling was developed, with a focus on time-evolving collagen fiber stiffness as the driver for tissue-level remodeling. The remodeling model was able to fully reproduce (1) the observed tissue-level increases in stiffness by time-evolving simultaneous increases in collagen fiber modulus and lengths, (2) maintenance of the constant collagen fiber angular dispersion, and (3) stabilization of the remodeling processes at one year. Collagen fiber remodeling geometry was directly verified experimentally by histological analysis of the time-evolving collagen fiber crimp, which matches model predictions very closely. Interestingly, the remodeling model indicated that the basis for tissue homeostasis was maintenance of the collagen fiber ensemble stress for all orientations, and not individual collagen fiber stresses. Unlike other growth and remodeling models that traditionally treat changes in the external boundary conditions (e.g., changes in blood pressure) as the primary input stimuli, the driver herein is changes to the internal constituent collagen fiber themselves due to cellular mediated cross-linking.

References

1.
Green
,
A.
,
2004
, “
Outcomes of Congenital Heart Disease: A Review
,”
Pediatr. Nurs.
,
30
(
4
), pp.
280
284
.https://pubmed.ncbi.nlm.nih.gov/15511043/
2.
Mayer
,
J. E.
, Jr.
,
Shin’oka
,
T.
, and
Shum-Tim
,
D.
,
1997
, “
Tissue Engineering of Cardiovascular Structures
,”
Curr. Opin. Cardiol.
,
12
(
6
), pp.
528
532
.10.1097/00001573-199711000-00005
3.
Mirensky
,
T. L.
, and
Breuer
,
C. K.
,
2008
, “
The Development of Tissue-Engineered Grafts for Reconstructive Cardiothoracic Surgical Applications
,”
Pediatr. Res.
,
63
(
5
), pp.
559
568
.10.1203/01.pdr.0000305938.92695.b9
4.
Mayer
,
J. E.
, Jr.
,
1995
, “
Uses of Homograft Conduits for Right Ventricle to Pulmonary Artery Connections in the Neonatal Period
,”
Semin. Thorac. Cardiovasc. Surg.
,
7
(
3
), pp.
130
132
.https://pubmed.ncbi.nlm.nih.gov/7548318/
5.
Mendelson
,
K.
, and
Schoen
,
F. J.
,
2006
, “
Heart Valve Tissue Engineering: Concepts, Approaches, Progress, and Challenges
,”
Ann. Biomed. Eng.
,
34
(
12
), pp.
1799
1819
.10.1007/s10439-006-9163-z
6.
Sacks
,
M. S.
,
Schoen
,
F. J.
, and
Mayer
,
J. E.
,
2009
, “
Bioengineering Challenges for Heart Valve Tissue Engineering
,”
Annu. Rev. Biomed. Eng.
,
11
(
1
), pp.
289
313
.10.1146/annurev-bioeng-061008-124903
7.
Mol
,
A.
,
Smits
,
A. I.
,
Bouten
,
C. V.
, and
Baaijens
,
F. P.
,
2009
, “
Tissue Engineering of Heart Valves: Advances and Current Challenges
,”
Expert Rev. Med. Devices
,
6
(
3
), pp.
259
275
.10.1586/erd.09.12
8.
Hoerstrup
,
S. P.
,
Cummings Mrcs
,
I.
,
Lachat
,
M.
,
Schoen
,
F. J.
,
Jenni
,
R.
,
Leschka
,
S.
,
Neuenschwander
,
S.
, et al.,
2006
, “
Functional Growth in Tissue-Engineered Living, Vascular Grafts: Follow-Up at 100 Weeks in a Large Animal Model
,”
Circulation
,
114
(
Suppl. 1
), pp.
I159
I166
.10.1161/CIRCULATIONAHA.105.001172
9.
Gottlieb
,
D.
,
Kunal
,
T.
,
Emani
,
S.
,
Aikawa
,
E.
,
Brown
,
D. W.
,
Powell
,
A. J.
,
Nedder
,
A.
, et al.,
2010
, “
In Vivo Monitoring of Function of Autologous Engineered Pulmonary Valve
,”
J. Thorac. Cardiovasc. Surg.
,
139
(
3
), pp.
723
731
.10.1016/j.jtcvs.2009.11.006
10.
Shinoka
,
T.
,
2002
, “
Tissue Engineered Heart Valves: Autologous Cell Seeding on Biodegradable Polymer Scaffold
,”
Artif. Organs
,
26
(
5
), pp.
402
406
.10.1046/j.1525-1594.2002.07004.x
11.
Shinoka
,
T.
,
Shum-Tim
,
D.
,
Ma
,
P. X.
,
Tanel
,
R. E.
,
Isogai
,
N.
,
Langer
,
R.
,
Vacanti
,
J. P.
, and
Mayer
,
J. E.
, Jr.
,
1998
, “
Creation of Viable Pulmonary Artery Autografts Through Tissue Engineering
,”
J. Thorac. Cardiovasc. Surg.
,
115
(
3
), pp.
536
546
.10.1016/S0022-5223(98)70315-0
12.
Shinoka
,
T.
,
Shum-Tim
,
D.
,
Ma
,
P. X.
,
Tanel
,
R. E.
,
Langer
,
R.
,
Vacanti
,
J. P.
, and
Mayer
,
J. E.
, Jr.
,
1997
, “
Tissue-Engineered Heart Valve Leaflets: Does Cell Origin Affect Outcome?
,”
Circulation
,
96
(
Suppl. 9
), pp.
II-102
II-107
.https://pubmed.ncbi.nlm.nih.gov/9386083/
13.
Shinoka
,
T.
,
Ma
,
P. X.
,
Shum-Tim
,
D.
,
Breuer
,
C. K.
,
Cusick
,
R. A.
,
Zund
,
G.
,
Langer
,
R.
,
Vacanti
,
J. P.
, and
Mayer
,
J. E.
, Jr.
,
1996
, “
Tissue-Engineered Heart Valves. Autologous Valve Leaflet Replacement Study in a Lamb Model
,”
Circulation
,
94
(
Suppl. 9
), pp.
II164
II168
.https://pubmed.ncbi.nlm.nih.gov/8901739/
14.
Shinoka
,
T.
,
Breuer
,
C. K.
,
Tanel
,
R. E.
,
Zund
,
G.
,
Miura
,
T.
,
Ma
,
P. X.
,
Langer
,
R.
,
Vacanti
,
J. P.
, and
Mayer
,
J. E.
, Jr.
,
1995
, “
Tissue Engineering Heart Valves: Valve Leaflet Replacement Study in a Lamb Model
,”
Ann. Thorac. Surg.
,
60
(
6
), pp.
S513
S516
.10.1016/S0003-4975(21)01185-1
15.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
,
Springer
,
New York
.
16.
Taber
,
L. A.
, and
Humphrey
,
J. D.
,
2001
, “
Stress-Modulated Growth, Residual Stress, and Vascular Heterogeneity
,”
ASME J. Biomech. Eng.
,
123
(
6
), pp.
528
535
.10.1115/1.1412451
17.
Eckert, C. E., Gottlieb, D., Padera, R. F., Schoen, F. J., Mayer, J. E., and Sacks, M. S., 2011, “Mechanical Characterization of the Wall of a Tissue Engineered Pulmonary Valve Conduit: A Twenty Week In Vivo Study,”
ASME
Paper No. SBC2011-53990.10.1115/SBC2011-53990
18.
Soares
,
J. S.
,
Zhang
,
W.
, and
Sacks
,
M. S.
,
2017
, “
A Mathematical Model for the Determination of Forming Tissue Moduli in Needled-Nonwoven Scaffolds
,”
Acta Biomater.
,
51
, pp.
220
236
.10.1016/j.actbio.2016.12.038
19.
Eckert
,
C. E.
,
Mikulis
,
B. T.
,
Gottlieb
,
D.
,
Gerneke
,
D.
,
LeGrice
,
I.
,
Padera
,
R. F.
,
Mayer
,
J. E.
,
Schoen
,
F. J.
, and
Sacks
,
M. S.
,
2011
, “
Three-Dimensional Quantitative Micromorphology of Pre- and Post-Implanted Engineered Heart Valve Tissues
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
205
222
.10.1007/s10439-010-0162-8
20.
Zhang
,
W.
,
Ayoub
,
S.
,
Liao
,
J.
, and
Sacks
,
M. S.
,
2016
, “
A Meso-Scale Layer-Specific Structural Constitutive Model of the Mitral Heart Valve Leaflets
,”
Acta Biomater.
,
32
, pp.
238
255
.10.1016/j.actbio.2015.12.001
21.
Sacks
,
M. S.
,
Zhang
,
W.
, and
Wognum
,
S.
,
2016
, “
A Novel Fibre-Ensemble Level Constitutive Model for Exogenous Cross-Linked Collagenous Tissues
,”
Interface Focus
,
6
(
1
), p.
20150090
.10.1098/rsfs.2015.0090
22.
Zhang
,
W.
, and
Sacks
,
M. S.
,
2017
, “
Modeling the Response of Exogenously Crosslinked Tissue to Cyclic Loading: The Effects of Permanent Set
,”
J. Mech. Behav. Biomed. Mater.
,
75
, pp.
336
350
.10.1016/j.jmbbm.2017.07.013
23.
Avazmohammadi
,
R.
,
Hill
,
M. R.
,
Simon
,
M. A.
,
Zhang
,
W.
, and
Sacks
,
M. S.
,
2017
, “
A Novel Constitutive Model for Passive Right Ventricular Myocardium: Evidence for Myofiber-Collagen Fiber Mechanical Coupling
,”
Biomech. Model. Mechanobiol.
,
16
(
2
), pp.
561
581
.10.1007/s10237-016-0837-7
24.
Lanir
,
Y.
,
1996
, “
Plausibility of Structural Constitutive Equations for Swelling Tissues—Implications of the C-N and S-E Conditions
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
10
16
.10.1115/1.2795935
25.
Lanir
,
Y.
,
1983
, “
Constitutive Equations for Fibrous Connective Tissues
,”
J. Biomech.
,
16
(
1
), pp.
1
12
.10.1016/0021-9290(83)90041-6
26.
Kassab
,
G. S.
, and
Sacks
,
M. S.
,
2016
,
Structure-Based Mechanics of Tissues and Organs
,
Springer
, New York.
27.
Liao
,
J.
,
Yang
,
L.
,
Grashow
,
J.
, and
Sacks
,
M. S.
,
2007
, “
The Relation Between Collagen Fibril Kinematics and Mechanical Properties in the Mitral Valve Anterior Leaflet
,”
ASME J. Biomech. Eng.
,
129
(
1
), pp.
78
87
.10.1115/1.2401186
28.
Liao
,
J.
,
Yang
,
L.
,
Grashow
,
J.
, and
Sacks
,
M.
,
2005
, “
Molecular Orientation of Collagen in Intact Planar Connective Tissues Under Biaxial Stretch
,”
Acta Biomater.
,
1
(
1
), pp.
45
54
.10.1016/j.actbio.2004.09.007
29.
Cohen-Solal
,
L.
,
Le Lous
,
M.
,
Allain
,
J.-C.
, and
Meunier
,
F.
,
1981
, “
Absence of Maturation of Collagen Crosslinking in Fish Skin?
,”
FEBS Lett.
,
123
(
2
), pp.
282
284
.10.1016/0014-5793(81)80308-0
30.
Colvée
,
E.
, and
Hurle
,
J. M.
,
1981
, “
Maturation of the Extracellular Material of the Semilunar Heart Values in the Mouse. A Histochemical Analysis of Collagen and Mucopolysaccharides
,”
Anat. Embryol.
,
162
(
3
), pp.
343
352
.10.1007/BF00299977
31.
Flandin
,
F.
,
Buffevant
,
C.
, and
Herbage
,
D.
,
1986
, “
Age-Related Changes in the Biochemical and Physicochemical Properties of Rat Skin. Collagen Synthesis and Maturation and Mechanical Parameters (Uniaxial Tension)
,”
Cell Mol. Biol.
,
32
(
5
), pp.
565
571
.https://pubmed.ncbi.nlm.nih.gov/3779758/
32.
Le Lous
,
M.
,
Allain
,
J.-C.
,
Cohen-Solal
,
L.
, and
Maroteaux
,
P.
,
1982
, “
The Rate of Collagen Maturation in Rat and Human Skin
,”
Connect. Tissue Res.
,
9
(
4
), pp.
253
262
.10.3109/03008208209160271
33.
Parry
,
D.
, and
Craig
,
A.
,
1988
, “
Collagen Fibrils During Development and Maturation and Their Contribution to the Mechanical Attributes of Connective Tissue
,”
Collagen, Volume II: Biochemistry and Biomechanics
, 1st ed.,
CRC Press
,
Boca Raton, FL
, pp.
1
23
.https://www.taylorfrancis.com/chapters/edit/10.1201/9781351070782-1/collagen-fibrils-developmentmaturation-contribution-mechanical-attributes-connective-tissue-david-parry-alan-craig
34.
Kent
,
M.
,
Light
,
N.
, and
Bailey
,
A.
,
1985
, “
Evidence for Glucose-Mediated Covalent Cross-Linking of Collagen After Glycosylation In Vitro
,”
Biochem. J.
,
225
(
3
), pp.
745
752
.10.1042/bj2250745
35.
Gleason
,
R. L.
, and
Humphrey
,
J. D.
,
2005
, “
Effects of a Sustained Extension on Arterial Growth and Remodeling: A Theoretical Study
,”
J. Biomech.
,
38
(
6
), pp.
1255
1261
.10.1016/j.jbiomech.2004.06.017
36.
Humphrey
,
J. D.
,
2009
, “
Vascular Mechanics, Mechanobiology, and Remodeling
,”
J. Mech. Med. Biol.
,
09
(
2
), pp.
243
257
.10.1142/S021951940900295X
37.
Humphrey
,
J. D.
,
1999
, “
Remodeling of a Collagenous Tissue at Fixed Lengths
,”
ASME J. Biomech. Eng.
,
121
(
6
), pp.
591
597
.10.1115/1.2800858
38.
Humphrey
,
J. D.
, and
Rajagopal
,
K. R.
,
2003
, “
A Constrained Mixture Model for Arterial Adaptations to a Sustained Step Change in Blood Flow
,”
Biomech. Model. Mechanobiol.
,
2
(
2
), pp.
109
126
.10.1007/s10237-003-0033-4
39.
Lanir
,
Y.
,
2017
, “
Fibrous Tissues Growth and Remodeling: Evolutionary Micro-Mechanical Theory
,”
J. Mech. Phys. Solids
,
107
, pp.
115
144
.10.1016/j.jmps.2017.06.011
40.
Lee
,
C. H.
,
Zhang
,
W.
,
Liao
,
J.
,
Carruthers
,
C. A.
,
Sacks
,
J. I.
, and
Sacks
,
M. S.
,
2015
, “
On the Presence of Affine Fibril and Fiber Kinematics in the Mitral Valve Anterior Leaflet
,”
Biophys. J.
,
108
(
8
), pp.
2074
2087
.10.1016/j.bpj.2015.03.019
41.
Cyron
,
C.
,
Aydin
,
R.
, and
Humphrey
,
J.
,
2016
, “
A Homogenized Constrained Mixture (and Mechanical Analog) Model for Growth and Remodeling of Soft Tissue
,”
Biomech. Model. Mechanobiol.
,
15
(
6
), pp.
1389
1403
.10.1007/s10237-016-0770-9
42.
Demirkoparan
,
H.
,
Pence
,
T. J.
, and
Wineman
,
A.
,
2013
, “
Chemomechanics and Homeostasis in Active Strain Stabilized Hyperelastic Fibrous Microstructures
,”
Int. J. Non-Linear Mech.
,
56
, pp.
86
93
.10.1016/j.ijnonlinmec.2013.05.005
43.
Baaijens
,
F.
,
Bouten
,
C.
,
Hoerstrup
,
S.
,
Mol
,
A.
,
Driessen
,
N.
, and
Boerboom
,
R.
,
2005
, “
Functional Tissue Engineering of the Aortic Heart Valve
,”
Clin. Hemorheol. Microcirc.
,
33
(
3
), pp.
197
199
.
44.
Mol
,
A.
, and
Hoerstrup
,
S. P.
,
2004
, “
Heart Valve Tissue Engineering—Where Do We Stand?
,”
Int. J. Cardiol.
,
95
(
Suppl. 1
), pp.
S57
S58
.10.1016/S0167-5273(04)90018-6
45.
Neuenschwander
,
S.
, and
Hoerstrup
,
S. P.
,
2004
, “
Heart Valve Tissue Engineering
,”
Transpl. Immunol.
,
12
(
3–4
), pp.
359
365
.10.1016/j.trim.2003.12.010
46.
Eichinger
,
J. F.
,
Haeusel
,
L. J.
,
Paukner
,
D.
,
Aydin
,
R. C.
,
Humphrey
,
J. D.
, and
Cyron
,
C. J.
,
2021
, “
Mechanical Homeostasis in Tissue Equivalents: A Review
,”
Biomech. Model. Mechanobiol.
,
20
(
3
), pp.
833
850
.10.1007/s10237-021-01433-9
47.
Lanir
,
Y.
,
2014
, “
Mechanistic Micro-Structural Theory of Soft Tissues Growth and Remodeling: Tissues With Unidirectional Fibers
,”
Biomech. Model. Mechanobiol.
,
14
(
2
), pp.
245
266
.10.1007/s10237-014-0600-x
48.
Sasaki
,
N.
, and
Odajima
,
S.
,
1996
, “
Stress-Strain Curve and Young's Modulus of a Collagen Molecule as Determined by the X-Ray Diffraction Technique
,”
J. Biomech.
,
29
(
5
), pp.
655
658
.10.1016/0021-9290(95)00110-7
49.
Alford
,
P. W.
,
Humphrey
,
J. D.
, and
Taber
,
L. A.
,
2008
, “
Growth and Remodeling in a Thick-Walled Artery Model: Effects of Spatial Variations in Wall Constituents
,”
Biomech. Model. Mechanobiol.
,
7
(
4
), pp.
245
262
.10.1007/s10237-007-0101-2
50.
Ambrosi
,
D.
,
Ateshian
,
G. A.
,
Arruda
,
E. M.
,
Cowin
,
S. C.
,
Dumais
,
J.
,
Goriely
,
A.
,
Holzapfel
,
G. A.
, et al.,
2011
, “
Perspectives on Biological Growth and Remodeling
,”
J. Mech. Phys. Solids
,
59
(
4
), pp.
863
883
.10.1016/j.jmps.2010.12.011
51.
Gleason
,
R. L.
,
Taber
,
L. A.
, and
Humphrey
,
J. D.
,
2004
, “
A 2-D Model of Flow-Induced Alterations in the Geometry, Structure, and Properties of Carotid Arteries
,”
ASME J. Biomech. Eng.
,
126
(
3
), pp.
371
381
.10.1115/1.1762899
52.
Ling
,
P.
,
Taber
,
L. A.
, and
Humphrey
,
J. D.
,
2002
, “
Approach to Quantify the Mechanical Behavior of the Intact Embryonic Chick Heart
,”
Ann. Biomed. Eng.
,
30
(
5
), pp.
636
645
.10.1114/1.1483080
53.
Rivlin
,
R. S.
, and
Saunders
,
D. W.
,
1951
, “
Large Elastic Deformations of Isotropic Materials. 7. Experiments on the Deformation of Rubber
,”
Philos. Trans. R. Soc. London Ser. A-Math. Phys. Sci.
,
243
(
865
), pp.
251
288
.10.1098/rsta.1951.0004
54.
Bailey
,
A.
,
1968
, “
Intermediate Labile Intermolecular Crosslinks in Collagen Fibres
,”
Biochim. Biophys. Acta
,
160
(
3
), pp.
447
453
.10.1016/0005-2795(68)90216-X
55.
Bailey
,
A.
, and
Shimokomaki
,
M.
,
1971
, “
Age-Related Changes in the Reducible Cross-Links of Collagen
,”
FEBS Lett.
,
16
(
2
), pp.
86
88
.10.1016/0014-5793(71)80338-1
56.
Gleason
,
R. L.
, and
Humphrey
,
J. D.
,
2004
, “
A Mixture Model of Arterial Growth and Remodeling in Hypertension: Altered Muscle Tone and Tissue Turnover
,”
J. Vasc. Res.
,
41
(
4
), pp.
352
363
.10.1159/000080699
57.
Lanir
,
Y.
,
2009
, “
Mechanisms of Residual Stress in Soft Tissues
,”
ASME J. Biomech. Eng.
,
131
(
4
), p.
044506
.10.1115/1.3049863
58.
Demirkoparan
,
H.
,
Pence
,
T. J.
, and
Wineman
,
A.
,
2011
, “
On Dissolution and Reassembly of Filamentary Reinforcing Networks in Hyperelastic Materials
,”
QNRS Repository
,
2011
(
1
), p.
2589
.10.1098/rspa.2008.0360
59.
Drews
,
J. D.
,
Pepper
,
V. K.
,
Best
,
C. A.
,
Szafron
,
J. M.
,
Cheatham
,
J. P.
,
Yates
,
A. R.
,
Hor
,
K. N.
, et al.,
2020
, “
Spontaneous Reversal of Stenosis in Tissue-Engineered Vascular Grafts
,”
Sci. Transl. Med.
,
12
(
537
), p.
eaax6919
.10.1126/scitranslmed.aax6919
60.
Blum
,
K. M.
,
Zbinden
,
J. C.
,
Ramachandra
,
A. B.
,
Lindsey
,
S. E.
,
Szafron
,
J. M.
,
Reinhardt
,
J. W.
,
Heitkemper
,
M.
, et al.,
2022
, “
Tissue Engineered Vascular Grafts Transform Into Autologous Neovessels Capable of Native Function and Growth
,”
Commun. Med.
,
2
(
1
), p.
3
.10.1038/s43856-021-00063-7
61.
Khosravi
,
R.
,
Ramachandra
,
A. B.
,
Szafron
,
J. M.
,
Schiavazzi
,
D. E.
,
Breuer
,
C. K.
, and
Humphrey
,
J. D.
,
2020
, “
A Computational Bio-Chemo-Mechanical Model of In Vivo Tissue-Engineered Vascular Graft Development
,”
Integr. Biol.
,
12
(
3
), pp.
47
63
.10.1093/intbio/zyaa004
62.
Fata
,
B.
,
Gottlieb
,
D.
,
Mayer
,
J. E.
, and
Sacks
,
M. S.
,
2013
, “
Estimated In Vivo Postnatal Surface Growth Patterns of the Ovine Main Pulmonary Artery and Ascending Aorta
,”
ASME J. Biomech. Eng.
,
135
(
7
), p.
071010
.10.1115/1.4024619
63.
Stella
,
J. A.
,
Wagner
,
W. R.
, and
Sacks
,
M. S.
,
2010
, “
Scale-Dependent Fiber Kinematics of Elastomeric Electrospun Scaffolds for Soft Tissue Engineering
,”
J. Biomed. Mater. Res. Part A
,
93A
(
3
), pp.
1032
1042
.10.1002/jbm.a.32593
64.
Stella
,
J. A.
,
Liao
,
J.
, and
Sacks
,
M. S.
,
2007
, “
Time-Dependent Biaxial Mechanical Behavior of the Aortic Heart Valve Leaflet
,”
J. Biomech.
,
40
(
14
), pp.
3169
3177
.10.1016/j.jbiomech.2007.04.001
65.
Grashow
,
J. S.
,
Sacks
,
M. S.
,
Liao
,
J.
, and
Yoganathan
,
A. P.
,
2006
, “
Planar Biaxial Creep and Stress Relaxation of the Mitral Valve Anterior Leaflet
,”
Ann. Biomed. Eng.
,
34
(
10
), pp.
1509
1518
.10.1007/s10439-006-9183-8
66.
Zhang
,
W.
,
Feng
,
Y.
,
Lee
,
C. H.
,
Billiar
,
K. L.
, and
Sacks
,
M. S.
,
2015
, “
A Generalized Method for the Analysis of Planar Biaxial Mechanical Data Using Tethered Testing Configurations
,”
ASME J. Biomech. Eng.
,
137
(
6
), p.
064501
.10.1115/1.4029266
67.
Wells
,
S.
, and
Sacks
,
M.
,
2000
, “
Effects of Stress-State During Fixation on the Fatigue Properties of Bioprosthetic Heart Valve Tissue
,”
Trans. Sixth World Biomater. Congr.
,
2
, p.
794
.
68.
Wells
,
S. M.
,
Pierlot
,
C. M.
, and
Moeller
,
A. D.
,
2012
, “
Physiological Remodeling of the Mitral Valve During Pregnancy
,”
Am. J. Physiol. Heart Circ. Physiol.
,
303
(
7
), pp.
H878
H892
.10.1152/ajpheart.00845.2011
You do not currently have access to this content.