Abstract

A bone bruise is generated by a bony collision that could occur when the anterior cruciate ligament (ACL) is injured, and its pattern reflects the injury mechanism and skeletal maturity. Thus, the bone bruise pattern is useful to predict a subject-specific injury mechanism, although the sensitivity and/or effect of the material property and the knee position at injury is still unclear. The objective of the present study was to determine the effect of the material property and knee position on the bone bruise pattern in skeletally mature and immature subjects using finite element analysis. Finite element models were created from a magnetic resonance (MR) image in the sagittal plane of a skeletally mature (25 y. o.) and immature (9 y. o.) male subject. The femur and tibia were collided at 2 m/s to simulate the impact trauma and determine the maximum principal stress. The analysis was performed at 15, 30, and 45 deg of knee flexion, and neutral, 10 mm anterior and posterior translated position at each knee flexion angle. Although high stress was distributed toward the metaphysis area in the mature model, the stress did not cross the growth plate in the immature model. The size of the stress area was larger in the mature model than those in the immature model. The location of the stress area changed depending on the joint position. Young's modulus of cartilage and trabecular bone also affected the location of the stress area. The Young's modulus for the cartilage affected peak stress during impact, while the size of the stress area had almost no change. These results indicate that the bone bruise pattern is strongly associated with subject-specific parameters. In addition, the bone bruise pattern was affected not only by knee position but also by tissue qualities. In conclusion, although the bone bruise distribution was generally called footprint of the injury, the combined evaluation of the quality of the structure and the bone bruise distribution is necessary for properly diagnosing tissue injury based on the MR imaging.

References

1.
Majewski
,
M.
,
Susanne
,
H.
, and
Klaus
,
S.
,
2006
, “
Epidemiology of Athletic Knee Injuries: A 10 Year Study
,”
Knee
,
13
(
3
), pp.
184
188
.10.1016/j.knee.2006.01.005
2.
Gianotti
,
S. M.
,
Marshall
,
S. W.
,
Hume
,
P. A.
, and
Bunt
,
L.
,
2009
, “
Incidence of Anterior Cruciate Ligament Injury and Other Knee Ligament Injuries: A National Population Based Study
,”
J. Sci. Med. Sport
,
12
(
6
), pp.
622
627
.10.1016/j.jsams.2008.07.005
3.
Ireland
,
M. L.
,
1999
, “
Anterior Cruciate Ligament Injury in Female Athletes: Epidemiology
,”
J. Athl. Train.
,
34
(
2
), pp.
150
154
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1322904/
4.
Linko
,
E.
,
Harilainen
,
A.
,
Malmivaara
,
A.
, and
Seitsalo
,
S.
,
2005
, “
Surgical Versus Conservative Interventions for Anterior Cruciate Ligament Ruptures in Adults
,”
Cochrane Database Syst. Rev.
,
2005
(
2
), p.
CD001356
.10.1002/14651858.CD001356.pub3
5.
Mather
,
I. R. C.
,
Koenig
,
L.
,
Kocher
,
M. S.
,
Dall
,
T. M.
,
Gallo
,
P.
,
Scott
,
D. J.
,
Bach
,
B. R.
, Jr.
,
Spindler
,
K. P.
, and
MOON Knee Group
,
2013
, “
Societal and Economic Impact of Anterior Cruciate Ligament Tears
,”
J. Bone Jt. Surg. Am.
,
95
(
19
), pp.
1751
1759
.10.2106/JBJS.L.01705
6.
LaBella
,
C. R.
,
Hennrikus
,
W.
,
Hewett
,
T. E.
,
Brenner
,
J. S.
,
Brookes
,
M. A.
,
Demorest
,
R. A.
,
Halstead
,
M. E.
, et al.,
2014
, “
Anterior Cruciate Ligament Injuries: Diagnosis, Treatment, and Prevention
,”
Pediatrics
,
133
(
5
), pp.
e1437
e1450
.10.1542/peds.2014-0623
7.
Paterno
,
M. V.
,
Rauh
,
M. J.
,
Schmitt
,
L. C.
,
Ford
,
K. R.
, and
Hewett
,
T. E.
,
2012
, “
Incidence of Contralateral and Ipsilateral Anterior Cruciate Ligament (ACL) Injury After Primary ACL Reconstruction and Return to Sport
,”
Clin. J. Sport Med.
,
22
(
2
), pp.
116
121
.10.1097/JSM.0b013e318246ef9e
8.
Andernord
,
D.
,
Desai
,
N.
,
Bjornsson
,
H.
,
Ylander
,
M.
,
Karlsson
,
J.
, and
Samuels-Son
,
K.
,
2015
, “
Patient Predictors of Early Revision Surgery After Anterior Cruciate Ligament Reconstruction: A Cohort Study of 16,930 Patients With 2-Year Follow-Up
,”
Am. J. Sports Med.
,
43
(
1
), pp.
121
127
.10.1177/0363546514552788
9.
Vincken
,
P. W.
,
Ter Braak
,
B. P.
,
van Erkel
,
A. R.
,
Coerkamp
,
E. G.
,
Mallens
,
W. M.
, and
Bloem
,
J. L.
,
2006
, “
Clinical Consequences of Bone Bruise Around the Knee
,”
Eur. Radiol.
,
16
(
1
), pp.
97
107
.10.1007/s00330-005-2735-8
10.
Rangger
,
C.
,
Kathrein
,
A.
,
Freund
,
M. C.
,
Klestil
,
T.
, and
Kreczy
,
A.
,
1998
, “
Bone Bruise of the Knee: Histology and Cryosections in 5 Cases
,”
Acta Orthop. Scand.
,
69
(
3
), pp.
291
294
.10.3109/17453679809000933
11.
Sanders
,
T. G.
,
Medynski
,
M. A.
,
Feller
,
J. F.
, and
Lawhorn
,
K. W.
,
2000
, “
Bone Contusion Patterns of the Knee at MR Imaging: Footprint of the Mechanism of Injury
,”
Radiographics
,
20
(
Suppl. 1
), pp.
S135
S151
.10.1148/radiographics.20.suppl_1.g00oc19s135
12.
Novaretti
,
J. V.
,
Shin
,
J. J.
,
Albers
,
M.
,
Chambers
,
M. C.
,
Cohen
,
M.
,
Musahl
,
V.
, and
Fu
,
F. H.
,
2018
, “
Bone Bruise Patterns in Skeletally Immature Patients With Anterior Cruciate Ligament Injury: Shock-Absorbing Function of the Physis
,”
Am. J. Sports Med.
,
46
(
9
), pp.
2128
2132
.10.1177/0363546518777247
13.
Kouhei
,
M.
,
Fuyuhiko
,
M.
,
Nobuyuki
,
Y.
,
Yukihisa
,
F.
,
Sadami
,
T.
, and
Ken
,
I.
,
2007
, “
Impact Load Transmission of Human Knee Joint Using In Vitro Drop-Tower Test and Three-Dimensional Finite Element Simulation
,”
JBSE
, 2(4), pp.
218
227
.10.1299/jbse.2.218
14.
Khoshgoftar
,
M.
,
Vrancken
,
A. C. T.
,
van Tienen
,
T. G.
,
Buma
,
P.
,
Janssen
,
D.
, and
Verdonschot
,
N.
,
2015
, “
The Sensitivity of Cartilage Contact Pressures in the Knee Joint to the Size and Shape of an Anatomically Shaped Meniscal Implant
,”
J. Biomech.
,
48
(
8
), pp.
1427
1435
.10.1016/j.jbiomech.2015.02.034
15.
Venäläinen
,
M. S.
,
Mononen
,
M. E.
,
Väänänen
,
S. P.
,
Jurvelin
,
J. S.
,
Töyräs
,
J.
,
Virén
,
T.
, and
Korhonen
,
R. K.
,
2016
, “
Effect of Bone Inhomogeneity on Tibiofemoral Contact Mechanics During Physiological Loading
,”
J. Biomech.
,
49
(
7
), pp.
1111
1120
.10.1016/j.jbiomech.2016.02.033
16.
Bayraktar
,
H. H.
,
Gupta
,
A.
,
Kwon
,
R. Y.
,
Papadopoulos
,
P.
, and
Keaveny
,
T. M.
,
2004
, “
The Modified Super-Ellipsoid Yield Criterion for Human Trabecular Bone
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
677
684
.10.1115/1.1763177
17.
Wachte
,
N. J.
,
Krischak
,
G. D.
,
Mentzel
,
M.
,
Sarkar
,
M. R.
,
Ebinger
,
T.
,
Kinzl
,
L.
,
Claes
,
L.
, and
Augat
,
P.
,
2002
, “
Correlation of Bone Mineral Density With Strength and Microstructural Parameters of Cortical Bone In Vitro
,”
Bone
,
31
(
1
), pp.
90
95
.10.1016/S8756-3282(02)00779-2
18.
Currey
,
J. D.
,
2004
, “
Tensile Yield in Compact Bone Is Determined by Strain, Post-Yield Behaviour by Mineral Content
,”
J. Biomech.
,
37
(
4
), pp.
549
556
.10.1016/j.jbiomech.2003.08.008
19.
Snyder
,
S. M.
, and
Schneider
,
E.
,
1991
, “
Estimation of Mechanical Properties of Cortical Bone by Computed Tomography
,”
J. Orthop. Res.
,
9
(
3
), pp.
422
431
.10.1002/jor.1100090315
20.
Rho
,
J. Y.
,
Ashman
,
R. B.
, and
Turner
,
C. H.
,
1993
, “
Young's Modulus of Trabecular and Cortical Bone Material: Ultrasonic and Microtensile Measurements
,”
J. Biomech.
,
26
(
2
), pp.
111
119
.10.1016/0021-9290(93)90042-D
21.
Zysset
,
P. K.
,
Guo
,
X. E.
,
Hoffler
,
C. E.
,
Moore
,
K. E.
, and
Goldstein
,
S. A.
,
1999
, “
Elastic Modulus and Hardness of Cortical and Trabecular Bone Lamellae Measured by Nanoindentation in the Human Femur
,”
J. Biomech.
,
32
(
10
), pp.
1005
1012
.10.1016/S0021-9290(99)00111-6
22.
Bonfield
,
W.
, and
Tully
,
A. E.
,
1982
, “
Ultrasonic Analysis of the Youngs Modulus of Cortical Bone
,”
ASME J. Biomed. Eng.
,
4
(
1
), pp.
23
27
.10.1016/0141-5425(82)90022-X
23.
Keller
,
T. S.
,
Mao
,
Z.
, and
Spengler
,
D. M.
,
1990
, “
Young's Modulus, Bending Strength, and Tissue Physical Properties of Human Compact Bone
,”
J. Orthop. Res.
,
8
(
4
), pp.
592
603
.10.1002/jor.1100080416
24.
Hoffmeister
,
B. K.
,
Smith
,
S. R.
,
Handley
,
S. M.
, and
Rho
,
J. Y.
,
2000
, “
Anisotropy of Young's Modulus of Human Tibial Cortical Bone
,”
Med. Biol. Eng. Comput.
,
38
(
3
), pp.
333
338
.10.1007/BF02347055
25.
Rho
,
J. Y.
,
Tsui
,
T. Y.
, and
Pharr
,
G. M.
,
1997
, “
Elastic Properties of Human Cortical and Trabecular Lamellar Bone Measured by Nanoindentation
,”
Biomaterials
,
18
(
20
), pp.
1325
1330
.10.1016/S0142-9612(97)00073-2
26.
Morgan
,
E. F.
,
Yeh
,
O. C.
,
Chang
,
W. C.
, and
Keaveny
,
T. M.
,
2001
, “
Nonlinear Behavior of Trabecular Bone at Small Strains
,”
ASME J. Biomech. Eng.
,
123
(
1
), pp.
1
9
.10.1115/1.1338122
27.
Keaveny
,
T. M.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
, and
Yeh
,
O. C.
,
2001
, “
Biomechanics of Trabecular Bone
,”
Annu. Rev. Biomed. Eng.
,
3
(
1
), pp.
307
333
.10.1146/annurev.bioeng.3.1.307
28.
Anderson
,
M. J.
,
Keyak
,
J. H.
, and
Skinner
,
H. B.
,
1992
, “
Compressive Mechanical Properties of Human Cancellous Bone After Gamma Irradiation
,”
J. Bone Jt. Surg. Am.
,
74
(
5
), pp.
747
752
.10.2106/00004623-199274050-00014
29.
Linde
,
F.
,
Hvid
,
I.
, and
Madsen
,
F.
,
1992
, “
The Effect of Specimen Geometry on the Mechanical Behaviour of Trabecular Bone Specimens
,”
J. Biomech.
,
25
(
4
), pp.
359
368
.10.1016/0021-9290(92)90255-Y
30.
Keller
,
T. S.
,
1994
, “
Predicting the Compressive Mechanical Behavior of Bone
,”
J. Biomech.
,
27
(
9
), pp.
1159
1168
.10.1016/0021-9290(94)90056-6
31.
Morgan
,
E. F.
,
Bayraktar
,
H. H.
, and
Keaveny
,
T. M.
,
2003
, “
Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site
,”
J. Biomech.
,
36
(
7
), pp.
897
904
.10.1016/S0021-9290(03)00071-X
32.
Kaneko
,
T. S.
,
Bell
,
J. S.
,
Pejcic
,
M. R.
,
Tehranzadeh
,
J.
, and
Keyak
,
J. H.
,
2004
, “
Mechanical Properties, Density and Quantitative CT Scan Data of Trabecular Bone With and Without Metastases
,”
J. Biomech.
,
37
(
4
), pp.
523
530
.10.1016/j.jbiomech.2003.08.010
33.
Choi
,
K.
,
Kuhn
,
J. L.
,
Ciarelli
,
M. J.
, and
Goldstein
,
S. A.
,
1990
, “
The Elastic Moduli of Human Subchondral, Trabecular, and Cortical Bone Tissue and the Size-Dependency of Cortical Bone Modulus
,”
J. Biomech.
,
23
(
11
), pp.
1103
1113
.10.1016/0021-9290(90)90003-L
34.
Armstrong
,
C. G.
,
Bahrani
,
A. S.
, and
Gardner
,
D. L.
,
1980
, “
Changes in the Deformational Behavior of Human Hip Cartilage With Age
,”
ASME J. Biomech. Eng.
,
102
(
3
), pp.
214
220
.10.1115/1.3149576
35.
Danso
,
E. K.
,
Honkanen
,
J. T. J.
,
Saarakkala
,
S.
, and
Korhonen
,
R. K.
,
2014
, “
Comparison of Nonlinear Mechanical Properties of Bovine Articular Cartilage and Meniscus
,”
J. Biomech.
,
47
(
1
), pp.
200
206
.10.1016/j.jbiomech.2013.09.015
36.
Bursać
,
P.
,
McGrath
,
C. V.
,
Eisenberg
,
S. R.
, and
Stamenović
,
D.
,
2000
, “
A Microstructural Model of Elastostatic Properties of Articular Cartilage in Confined Compression
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
347
353
.10.1115/1.1286561
37.
Stolz
,
M.
,
Raiteri
,
R.
,
Daniels
,
A. U.
,
VanLandingham
,
M. R.
,
Baschong
,
W.
, and
Aebi
,
U.
,
2004
, “
Dynamic Elastic Modulus of Porcine Articular Cartilage Determined at Two Different Levels of Tissue Organization by Indentation-Type Atomic Force Microscopy
,”
Biophys. J.
,
86
(
5
), pp.
3269
3283
.10.1016/S0006-3495(04)74375-1
38.
Barker
,
M. K.
, and
Seedhom
,
B. B.
,
2001
, “
The Relationship of the Compressive Modulus of Articular Cartilage With Its Deformation Response to Cyclic Loading: Does Cartilage Optimize Its Modulus So as to Minimize the Strains Arising in It Due to the Prevalent Loading Regime?
,”
Rheumatology (Oxford)
,
40
(
3
), pp.
274
284
.10.1093/rheumatology/40.3.274
39.
Butz
,
K. D.
,
Chan
,
D. D.
,
Nauman
,
E. A.
, and
Neu
,
C. P.
,
2011
, “
Stress Distributions and Material Properties Determined in Articular Cartilage From MRI-Based Finite Strains
,”
J. Biomech.
,
44
(
15
), pp.
2667
2672
.10.1016/j.jbiomech.2011.08.005
40.
Krosshaug
,
T.
,
Slauterbeck
,
J. R.
,
Engebretsen
,
L.
, and
Bahr
,
R.
,
2007
, “
Biomechanical Analysis of Anterior Cruciate Ligament Injury Mechanisms: Three-Dimensional Motion Reconstruction From Video Sequences
,”
Scand. J. Med. Sci. Sports
,
17
(
5
), pp.
508
519
.10.1111/j.1600-0838.2006.00558.x
41.
Bretlau
,
T.
,
Tuxøe
,
J.
,
Larsen
,
L.
,
Jørgensen
,
U.
,
Thomsen
,
H. S.
, and
Lausten
,
G. S.
,
2002
, “
Bone Bruise in the Acutely Injured Knee
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
10
(
2
), pp.
96
101
.10.1007/s00167-001-0272-9
42.
Chin
,
Y. C.
,
Wijaya
,
R.
,
Chong Le
,
R.
,
Chang
,
H. C.
, and
Lee
,
Y. H.
,
2014
, “
Bone Bruise Patterns in Knee Injuries: Where Are They Found?
,”
Eur. J. Orthop. Surg. Traumatol.
,
24
(
8
), pp.
1481
1487
.10.1007/s00590-013-1319-6
43.
Viskontas
,
D. G.
,
Giuffre
,
B. M.
,
Duggal
,
N.
,
Graham
,
D.
,
Parker
,
D.
, and
Coolican
,
M.
,
2008
, “
Bone Bruises Associated With ACL Rupture: Correlation With Injury Mechanism
,”
Am. J. Sports Med.
,
36
(
5
), pp.
927
933
.10.1177/0363546508314791
44.
Graf
,
B. K.
,
Cook
,
D. A.
,
De Smet
,
A. A.
, and
Keene
,
J. S.
,
1993
, “‘
Bone Bruises’ on Magnetic Resonance Imaging Evaluation of Anterior Cruciate Ligament Injuries
,”
Am. J. Sports Med.
,
21
(
2
), pp.
220
223
.10.1177/036354659302100210
45.
Speer
,
K. P.
,
Spritzer
,
C. E.
,
Bassett
,
F. H.
, III
,
Feagin
,
J. A.
, Jr.
, and
Garrett
,
W. E.
, Jr.
,
1992
, “
Osseous Injury Associated With Acute Tears of the Anterior Cruciate Ligament
,”
Am. J. Sports Med.
,
20
(
4
), pp.
382
389
.10.1177/036354659202000403
46.
Shi
,
H.
,
Ding
,
L.
,
Jiang
,
Y.
,
Zhang
,
H.
,
Ren
,
S.
,
Hu
,
X.
,
Liu
,
Z.
,
Huang
,
H.
, and
Ao
,
Y.
,
2020
, “
Bone Bruise Distribution Patterns After Acute Anterior Cruciate Ligament Ruptures: Implications for the Injury Mechanism
,”
Orthop. J. Sports Med.
,
8
(
4
), p.
2325967120911162
.10.1177/2325967120911162
47.
Pedersen
,
D. R.
,
El-Khoury
,
G. Y.
,
Thedens
,
D. R.
,
Saad-Eldine
,
M.
,
Phisitkul
,
P.
, and
Amendola
,
A.
,
2017
, “
Bone Contusion Progression From Traumatic Knee Injury: Association of Rate of Contusion Resolution With Injury Severity
,”
Open Access J. Sports Med.
,
8
, pp.
9
15
.10.2147/OAJSM.S118811
You do not currently have access to this content.