Abstract

Respiratory diseases debilitate more than 250 million people around the world. Among available inhalation devices, the soft mist inhaler (SMI) is the most efficient at delivering drugs to ease respiratory disease symptoms. In this study, we analyzed the SMI performance in terms of the aerosol's velocity profiles, flow pattern, size distribution, and deposition by employing computational fluid dynamics (CFD) simulations. We modeled two different simplified mouth geometries, idealized mouth (IM), and standard mouth (SM). Three different locations (x = 0, x = 5, and x = 10 mm) for the SMI nozzle orifice were chosen along the mouth cavity centerlines, followed by two different SMI nozzle angles (10 deg and 20 deg) for IM geometry. A flowrate of 30 L/min was applied. The simulation results were evaluated against experimental data. It was found that the SMI could be simulated successfully with a level of error of less than 10%. The inhalation flowrate significantly impacted the aerosol's velocity profile and deposition efficiency on both the IM and SM walls. The lowest particle deposition on the mouth wall occurred when a fixed flowrate (30 L/min) was applied inside both geometries, and the SMI nozzle position moved forward to x = 10 mm from the IM and SM inlets. An increase in the SMI nozzle angle increased particle deposition and decreased the deposition fraction for particles with a diameter above 5 μm inside the IM.

References

1.
Ciciliani
,
A. M.
,
Denny
,
M.
,
Langguth
,
P.
,
Voshaar
,
T.
, and
Wachtel
,
H.
,
2020
, “
Lung Deposition Using the Respimat® Soft MistTM Inhaler Mono and Fixed-Dose Combination Therapies: An In Vitro/in Silico Analysis
,”
COPD J. Chronic Obstr. Pulm. Dis.
, 18(1), pp. 9
1
100
.10.1080/15412555.2020.1853091
2.
Alatrash
,
A.
,
Mehri
,
R.
,
Ogrodnik
,
N.
,
Matida
,
E.
, and
Fiorenza
,
F.
,
2019
, “
Experimental Study of Spiriva Respimat Soft Mist Inhaler Spray Characterization: Size Distributions and Velocity
,”
J. Aerosol Med. Pulm. Drug Deliv.
,
32
(
5
), pp.
293
302
.10.1089/jamp.2018.1501
3.
Longest
,
P. W.
,
Tian
,
G.
,
Li
,
X.
,
Son
,
Y. J.
, and
Hindle
,
M.
,
2012
, “
Performance of Combination Drug and Hygroscopic Excipient Submicrometer Particles From a Softmist Inhaler in a Characteristic Model of the Airways
,”
Ann. Biomed. Eng.
,
40
(
12
), pp.
2596
2610
.10.1007/s10439-012-0616-2
4.
Longest
,
P. W.
, and
Hindle
,
M.
,
2009
, “
Evaluation of the Respimat Soft Mist Inhaler Using a Concurrent CFD and In Vitro Approach
,”
J. Aerosol Med. Pulm. Drug Deliv.
,
22
(
2
), pp.
99
112
.10.1089/jamp.2008.0708
5.
Dastoorian
,
F.
,
Pakzad
,
L.
,
Kozinski
,
J.
, and
Behzadfar
,
E.
,
2022
, “
A CFD Investigation on the Aerosol Drug Delivery in the Mouth–Throat Airway Using a Pressurized Metered-Dose Inhaler Device
,”
Processes
,
10
(
7
), p.
1230
.10.3390/pr10071230
6.
Iwanaga
,
T.
,
Tohda
,
Y.
,
Nakamura
,
S.
, and
Suga
,
Y.
,
2019
, “
The Respimat® Soft Mist Inhaler: Implications of Drug Delivery Characteristics for Patients
,”
Clin. Drug Investig.
,
39
(
11
), pp.
1021
1030
.10.1007/s40261-019-00835-z
7.
De Boer
,
A. H.
,
Hagedoorn
,
P.
,
Hoppentocht
,
M.
,
Buttini
,
F.
,
Grasmeijer
,
F.
, and
Frijlink
,
H. W.
,
2017
, “
Dry Powder Inhalation: Past, Present and Future
,”
Expert Opin. Drug Deliv.
,
14
(
4
), pp.
499
512
.10.1080/17425247.2016.1224846
8.
Saeedipour
,
M.
,
2019
, “
Atomization of Two Colliding Micro Liquid Jets in a Respiratory Inhaler: A Computational Study
,”
29th ILASS European Conference on Liquid Atomization and Spray Systems
, Paris, France, Sept.https://www.researchgate.net/publication/335609748_Atomization_of_two_colliding_micro_liquid_jets_in_a_respiratory_inhaler_A_computational_study
9.
Brown
,
K. J.
,
Kalata
,
W.
, and
Schick
,
R. J.
,
2010
, “
Experimental and Computational Study of a Spray at Multiple Injection Angles Impact Study of a Clean in Place Tank Wash System
,”
Second Annual Conference on Liquid Atomization and Spray Systems, ILASS Americas
, Cincinnati, OH, May.https://ilass.org/ConferencePapers/ILASS2010-181.PDF
10.
Longest
,
P. W.
,
Spence
,
B.
, and
Hindle
,
M.
,
2019
, “
Devices for Improved Delivery of Nebulized Pharmaceutical Aerosols to the Lungs
,”
J. Aerosol Med. Pulm. Drug Deliv.
,
32
(
5
), pp.
317
339
.10.1089/jamp.2018.1508
11.
Longest
,
P. W.
, and
Kleinstreuer
,
C.
,
2005
, “
Computational Models for Simulating Multicomponent Aerosol Evaporation in the Upper Respiratory Airways
,”
Aerosol Sci. Technol.
,
39
(
2
), pp.
124
138
.10.1080/027868290908786
12.
Zierenberg
,
B.
,
1999
, “
Optimizing the In Vitro Performance of Respimat
,”
J. Aerosol Med. Depos. Clear. Eff. Lung.
,
12
, pp.
19
25
.10.1089/jam.1999.12.Suppl_1.S-19
13.
Zierenberg
,
B.
,
1992
, “
The Respimat, a New Inhalation System Based on the Piezoelectric Effect
,”
Biopharm. Sci.
,
3
, pp.
85
90
.
14.
Aggarwal
,
S. K.
,
2012
, “
Review of Handbook of Atomization and Spray: Theory and Applications
,”
AIAA J.
,.
50
(
3
), pp.
767
768
.10.2514/1.J051310
15.
Martin
,
A. R.
, and
Finlay
,
W. H.
,
2015
, “
Nebulizers for Drug Delivery to the Lungs
,”
Expert Opin. Drug Deliv.
,
12
(
6
), pp.
889
900
.10.1517/17425247.2015.995087
16.
Hindle
,
M.
, and
Longest
,
P. W.
,
2012
, “
Condensational Growth of Combination Drug-Excipient Submicrometer Particles for Targeted High-Efficiency Pulmonary Delivery: Comparison of CFD Predictions With Experimental Results
,”
Pharm. Res.
,
23
, pp.
1
7
.10.1007/s11095-011-0596-1
17.
Matida
,
E. A.
,
Finlay
,
W. H.
,
Lange
,
C. F.
, and
Grgic
,
B.
,
2004
, “
Improved Numerical Simulation of Aerosol Deposition in an Idealized Mouth-Throat
,”
J. Aerosol Sci.
,
35
(
1
), pp.
1
19
.10.1016/S0021-8502(03)00381-1
18.
Cochrane
,
M. G.
,
Bala
,
M. V.
,
Downs
,
K. E.
,
Mauskopf
,
J.
, and
Ben-Joseph
,
R. H.
,
2000
, “
Inhaled Corticosteroids for Asthma Therapy: Patient Compliance, Devices, and Inhalation Technique
,”
Chest
,
117
, pp.
542
550
.10.1378/chest.117.2.542
19.
Ke
,
W. R.
,
Wang
,
W. J.
,
Lin
,
T. H.
,
Wu
,
C. L.
,
Huang
,
S. H.
,
Wu
,
H. D.
, and
Chen
,
C. C.
,
2020
, “
In Vitro Evaluation of Aerosol Performance and Delivery Efficiency During Mechanical Ventilation Between Soft Mist Inhaler and Pressurized Metered-Dose Inhaler
,”
Respir. Care
,
65
(
7
), pp.
1001
1010
.10.4187/respcare.06993
20.
Demoly
,
P.
,
Hagedoorn
,
P.
,
De Boer
,
A. H.
, and
Frijlink
,
H. W.
,
2014
, “
The Clinical Relevance of Dry Powder Inhaler Performance for Drug Delivery
,”
Respir. Med.
,
108
(
8
), pp.
1195
1203
.10.1016/j.rmed.2014.05.009
21.
Newman
,
S. P.
,
Steed
,
K. P.
,
Reader
,
S. J.
,
Pavia
,
D.
, and
Sohal
,
A. K.
,
2007
, “
An In Vitro Study to Assess Facial and Ocular Deposition From Respimat® Soft Mist Inhaler
,”
J. Aerosol Med. Depos. Clear. Eff. Lung.
,
20
(
1
), pp.
7
12
.10.1089/jam.2006.0563
22.
Rahman
,
M. F. A.
,
Asmuin
,
N. Z.
,
Taib
,
I.
,
Mat
,
M. N. H.
, and
Khairulfuaad
,
R.
,
2020
, “
Influence of Actuator Nozzle Angle on the Flow Characteristics in Pressurized-Metered Dose Inhaler Using CFD
,”
CFD Lett.
,
12
(
6
), pp.
67
79
.10.37934/cfdl.12.6.6779
23.
Hira
,
D.
,
Koide
,
H.
,
Nakamura
,
S.
,
Okada
,
T.
,
Ishizeki
,
K.
,
Yamaguchi
,
M.
,
Koshiyama
,
S.
,
Oguma
,
T.
,
Ito
,
K.
,
Funayama
,
S.
,
Komase
,
Y.
,
Morita
,
S.-y.
,
Nishiguchi
,
K.
,
Nakano
,
Y.
, and
Terada
,
T.
,
2018
, “
Assessment of Inhalation Flow Patterns of Soft Mist Inhaler Co-Prescribed With Dry Powder Inhaler Using Inspiratory Flow Meter for Multi Inhalation Devices
,”
PLoS One
,
13
(
2
), p.
e0193082
.10.1371/journal.pone.0193082
24.
Ronald
,
D.
,
2006
, “
Systemic Side Effects of Inhaled Corticosteroids in Patients With Asthma
,”
Respir. Med.
,
100
(
8
), pp.
1307
1317
.10.1016/j.rmed.2005.11.020
25.
Delvadia
,
R.
,
Longest
,
P.
,
Hindle
,
M.
, and
Byron
,
P. R.
,
2013
, “
In Vitro Tests for Aerosol Deposition. III: Effect of Inhaler Insertion Angle on Aerosol Deposition
,”
J. Aerosol Med. Pulm. Drug Deliv.
,
26
(
3
), pp.
145
156
.10.1089/jamp.2012.0989
26.
Fadl
,
A.
,
Wang
,
J.
,
Zhang
,
Z.
, and
Sung
,
Y.
,
2007
, “
Effects of MDI Spray Angle on Aerosol Penetration Efficiency Through an Oral Airway Cast
,”
J. Aerosol Sci.
,
38
(
8
), pp.
853
864
.10.1016/j.jaerosci.2007.06.002
27.
Dutta
,
R.
,
Spence
,
B.
,
Wei
,
X.
,
Dhapare
,
S.
,
Hindle
,
M.
, and
Longest
,
P. W.
,
2020
, “
CFD Guided Optimization of Nose-to-Lung Aerosol Delivery in Adults: Effects of Inhalation Waveforms and Synchronized Aerosol Delivery
,”
Pharm. Res.
,
37
(
10
), p.
199
.10.1007/s11095-020-02923-8
28.
Yousefi
,
M.
,
Inthavong
,
K.
, and
Tu
,
J.
,
2017
, “
Effect of Pressurized Metered Dose Inhaler Spray Characteristics and Particle Size Distribution on Drug Delivery Efficiency
,”
J. Aerosol Med. Pulm. Drug Deliv.
,
30
(
5
), pp.
359
372
.10.1089/jamp.2016.1299
29.
Finlay
,
W. H.
, and
Darquenne
,
C.
,
2020
, “
Particle Size Distributions
,”
J. Aerosol Med. Pulm. Drug Deliv.
,
33
(
4
), pp.
178
180
.10.1089/jamp.2020.29028.whf
30.
Miyamoto
,
K.
,
Taga
,
H.
,
Akita
,
T.
, and
Yamashita
,
C.
,
2020
, “
Simple Method to Measure the Aerodynamic Size Distribution of Porous Particles Generated on Lyophilizate for Dry Powder Inhalation
,”
Pharmaceutics
,
12
(
10
), pp.
976
914
.10.3390/pharmaceutics12100976
31.
Mehri
,
R.
,
Slew
,
K. L.
,
Alatrash
,
A.
,
Matida
,
E.
, and
Fiorenza
,
F.
,
2018
, “
Aerosol Deposition Measurements With ODAPT Mask Adapter
,”
Respir. Ther. J. Pulm. Technol.
,
13
, pp.
10
14
.https://www.semanticscholar.org/paper/Aerosol-Deposition-Measurements-with-ODAP T-Mask-Mehri-Slew/454a19bea4c934b04a606195ece5d494b316f052
32.
Pitcairn
,
G.
,
Reader
,
S.
,
Pavia
,
D.
, and
Newman
,
S.
,
2005
, “
Deposition of Corticosteroid Aerosol in the Human Lung by Respimat® Soft Mist Inhaler Compared to Deposition by Metered Dose Inhaler or by Turbuhaler® Dry Powder Inhaler
,”
J. Aerosol Med. Depos. Clear. Eff. Lung
,
18
(
3
), pp.
264
272
.10.1089/jam.2005.18.264
33.
Hindle
,
M.
, and
Longest
,
P. W.
,
2010
, “
Evaluation of Enhanced Condensational Growth (ECG) for Controlled Respiratory Drug Delivery in a Mouth-Throat and Upper Tracheobronchial Model
,”
Pharm. Res.
,
27
(
9
), pp.
1800
1811
.10.1007/s11095-010-0165-z
34.
Longest
,
P. W.
, and
Hindle
,
M.
,
2010
, “
CFD Simulations of Enhanced Condensational Growth (ECG) Applied to Respiratory Drug Delivery With Comparisons to In Vitro Data
,”
J. Aerosol Sci.
,
41
(
8
), pp.
805
820
.10.1016/j.jaerosci.2010.04.006
35.
Brand
,
P.
,
Hederer
,
B.
,
Austen
,
G.
,
Dewberry
,
H.
, and
Meyer
,
T.
,
2008
, “
Higher Lung Deposition With Respimat® Soft MistTM Inhaler Than HFA-MDI in COPD Patients With Poor Technique
,”
Int. J. COPD
,
3
, pp.
763
770
.10.2147/COPD.S3930
36.
Mehri
,
R.
,
Alatrash
,
A.
,
Ogrodnik
,
N.
,
Matida
,
E. A.
, and
Fiorenza
,
F.
,
2020
, “
In Vitro Measurements of Spiriva Respimat Dose Delivery in Mechanically Ventilated Tracheostomy Patients
,”
J. Aerosol Med. Pulm. Drug Deliv.
,
34
(), pp.
1
9
.10.1089/jamp.2019.1570
37.
Wei
,
X.
,
Hindle
,
M.
,
Kaviratna
,
A.
,
Huynh
,
B. K.
,
Delvadia
,
R. R.
,
Sandell
,
D.
, and
Byron
,
P. R.
,
2018
, “
In Vitro Tests for Aerosol Deposition. VI: Realistic Testing With Different Mouth-Throat Models and In Vitro—In Vivo Correlations for a Dry Powder Inhaler, Metered Dose Inhaler, and Soft Mist Inhaler
,”
J. Aerosol Med. Pulm. Drug Deliv.
,
31
(
6
), pp.
358
371
.10.1089/jamp.2018.1454
38.
Gavtash
,
B.
,
Versteeg
,
H.
,
Hargrave
,
G.
,
Myatt
,
B.
,
Lewis
,
D.
,
Church
,
T.
, and
Brambilla
,
G.
,
2017
, “
Multi-Physics Theoretical Approach to Predict pMDI Spray Characteristics
,”
Drug Deliv. Lungs
,
27
, pp.
4
8
.https://ddl-conference.com/ddl27-2016/conferencepapers/multi-physics-theoretical-approach-predict-pmdi-spray-characteristics/
39.
Mortazavi
,
H.
, and
Pakzad
,
L.
,
2020
, “
The Hydrodynamics and Mixing Performance in a Moving Baffle Oscillatory Baffled Reactor Through Computational Fluid Dynamics (CFD)
,”
Processes
,
8
(
10
), p.
1236
.10.3390/pr8101236
40.
Agahzamin
,
S.
, and
Pakzad
,
L.
,
2019
, “
A Comprehensive CFD Study on the Effect of Dense Vertical Internals on the Hydrodynamics and Population Balance Model in Bubble Columns
,”
Chem. Eng. Sci.
,
193
, pp.
421
435
.10.1016/j.ces.2018.08.052
41.
Sutherland
,
K.
,
Pakzad
,
L.
, and
Fatehi
,
P.
,
2019
, “
CFD Population Balance Modeling and Dimensionless Group Analysis of a Multiphase Oscillatory Baffled Column (OBC) Using Moving Overset Meshes
,”
Chem. Eng. Sci.
,
199
, pp.
552
570
.10.1016/j.ces.2019.01.005
42.
Ma
,
B.
, and
Lutchen
,
K. R.
,
2009
, “
CFD Simulation of Aerosol Deposition in an Anatomically Based Human Large-Medium Airway Model
,”
Ann. Biomed. Eng.
,
37
(
2
), pp.
271
285
.10.1007/s10439-008-9620-y
43.
Bass
,
K.
, and
Longest
,
P. W.
,
2018
, “
Recommendations for Simulating Microparticle Deposition at Conditions Similar to the Upper Airways With Two-Equation Turbulence Models
,”
J. Aerosol. Sci.
,
119
, pp.
31
50
.10.1016/j.jaerosci.2018.02.007
44.
Ahookhosh
,
K.
,
Saidi
,
M.
,
Mohammadpourfard
,
M.
,
Aminfar
,
H.
,
Hamishehkar
,
H.
,
Farnoud
,
A.
, and
Schmid
,
O.
,
2021
, “
Flow Structure and Particle Deposition Analyses for Optimization of a Pressurized Metered Dose Inhaler (pMDI) in a Model of Tracheobronchial Airway
,”
Eur. J. Pharm. Sci.
,
164
, p.
105911
.10.1016/j.ejps.2021.105911
45.
ANSYS, FLUENT,
2019
,
ANSYS, FLUENT, 19.3 Theory Guide
,
ANSYS
, Canonsburg, PA.
46.
Zhang
,
Y.
,
Finlay
,
W. H.
, and
Matida
,
E. A.
,
2004
, “
Particle Deposition Measurements and Numerical Simulation in a Highly Idealized Mouth-Throat
,”
J Aerosol Sci.
,
35
(
7
), pp.
789
803
.10.1016/j.jaerosci.2003.12.006
47.
Sarkar
,
S.
,
Peri
,
S. P.
, and
Chaudhuri
,
B.
,
2017
, “
Investigation of Multiphase Multicomponent Aerosol Flow Dictating pMDI-Spacer Interactions
,”
Int. J. Pharm.
,
529
(
1–2
), pp.
264
274
.10.1016/j.ijpharm.2017.07.005
48.
Paz
,
C.
,
Suárez
,
E.
,
Vence
,
J.
, and
Cabarcos
,
A.
,
2019
, “
Engineering Analysis of the Volume of Fluid (VOF) Method for the Simulation of the Mucus Clearance Process With CFD
,”
Comput. Methods Biomech. Biomed. Eng.
,
22
(
5
), pp.
547
566
.10.1080/10255842.2019.1569637
49.
Yin
,
X.
,
Zarikos
,
I.
,
Karadimitriou
,
N. K.
,
Raoof
,
A.
, and
Hassanizadeh
,
S. M.
,
2019
, “
Direct Simulations of Two-Phase Flow Experiments of Different Geometry Complexities Using Volume-of-Fluid (VOF) Method
,”
Chem. Eng. Sci.
,
195
, pp.
820
827
.10.1016/j.ces.2018.10.029
50.
Versteeg
,
H.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
, 2nd ed., Pearson Education, Harlow, UK.
51.
Das
,
P.
,
Nof
,
E.
,
Amirav
,
I.
,
Kassinos
,
S. C.
, and
Sznitman
,
J.
,
2018
, “
Targeting Inhaled Aerosol Delivery to Upper Airways in Children: Insight From Computational Fluid Dynamics (CFD)
,”
PLos One
,
13
(
11
), p.
e0207711
.10.1371/journal.pone.0207711
52.
Walenga
,
R. L.
,
Tian
,
G.
, and
Longest
,
P. W.
,
2013
, “
Development of Characteristic Upper Tracheobronchial Airway Models for Testing Pharmaceutical Aerosol Delivery
,”
ASME J. Biomech. Eng.
,
135
(
9
), p.
091010
.10.1115/1.4024630
53.
Wilcox
,
D. C.
,
2006
,
Turbulence Modeling for CFD
, 3rd ed., DCW Industries, La Cañada Flintridge, CA.
54.
Longest
,
P. W.
,
Hindle
,
M.
,
Choudhuri
,
S. D.
, and
Xi
,
J.
,
2008
, “
Comparison of Ambient and Spray Aerosol Deposition in a Standard Induction Port and More Realistic Mouth–Throat Geometry
,”
Aerosol Sci.
,
39
(
7
), pp.
572
591
.10.1016/j.jaerosci.2008.03.008
55.
Menter
,
F. R.
,
1994
, “
Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications
,”
AIAA J.
,
32
(
8
), pp.
1598
1605
.10.2514/3.12149
56.
Uijttewaal
,
W. S. J.
, and
Oliemans
,
R. V. A.
,
1996
, “
Particle Dispersion and Deposition in Direct Numerical and Large Eddy Simulations of Vertical Pipe Flows
,”
Phys. Fluids
,
8
(
10
), pp.
2590
2604
.10.1063/1.869046
57.
Inthavong
,
K.
,
2020
, “
From Indoor Exposure to Inhaled Particle Deposition: A Multiphase Journey of Inhaled Particles
,”
Exp. Comput. Multiphase Flow
,
2
(
2
), pp.
59
78
.10.1007/s42757-019-0046-6
58.
Paul
,
M. M.
, and
Pakzad
,
L.
,
2022
, “
Bubble Size Distribution and Gas Holdup in Bubble Columns Employing Non-Newtonian Liquids: A CFD Study
,”
Can. J. Chem. Eng.
,
100
(
10
), pp.
3030
3046
.10.1002/cjce.24352
59.
Agahzamin
,
S.
, and
Pakzad
,
L.
,
2019
, “
CFD Investigation of the Gas Dispersion and Liquid Mixing in Bubble Columns With Dense Vertical Internals
,”
Chem. Eng. Sci.
,
203
, pp.
425
438
.10.1016/j.ces.2019.03.048
60.
Kamin
,
W.
,
Frank
,
M.
,
Kattenbeck
,
S.
,
Moroni-Zentgraf
,
P.
,
Wachtel
,
H.
, and
Zielen
,
S.
,
2015
, “
A Handling Study to Assess Use of the Respimat® Soft Mist™ Inhaler in Children Under 5 Years Old
,”
J. Aerosol Med. Pulm. Drug Deliv.
,
28
(
5
), pp.
372
381
.10.1089/jamp.2014.1159
61.
Ge
,
Y.
,
Tong
,
Z.
,
Li
,
R.
,
Huang
,
F.
, and
Yu
,
J.
,
2021
, “
Numerical and Experimental Investigation on Key Parameters of the Respimat® Spray Inhaler
,”
Processes
,
9
, pp.
1
17
.10.3390/pr9010044
62.
Gholamzadehdevin
,
M.
, and
Pakzad
,
P.
,
2019
, “
Hydrodynamic Characteristics of an Activated Sludge Bubble Column Through Computational Fluid Dynamics (CFD) and Response Surface Methodology (RSM)
,”
Can. J. Chem. Eng.
,
97
(
4
), pp.
967
982
.10.1002/cjce.23335
63.
Xi
,
J.
, and
Longest
,
P. W.
,
2008
, “
Effects of Oral Airway Geometry Characteristics on the Diffusional Deposition of Inhaled Nanoparticles
,”
ASME J. Biomech. Eng.
,
130
(
1
), p.
011008
.10.1115/1.2838039
64.
Mehri
,
R.
,
Alatrash
,
A.
,
Ogrodnik
,
N.
,
Lee Slew
,
K.
, and
Matida
,
E. A.
,
2020
, “
Comparison of Tiotropium Delivery With the ODAPT Adapter and a Valved Holding Chamber
,”
Can. J. Respir. Crit. Care, Sleep Med.
, 5(5), pp.
293
299
.10.1080/24745332.2020.1787112
65.
Koullapis
,
P. G.
,
Nicolaou
,
L.
, and
Kassinos
,
S. C.
,
2018
, “
In Silico Assessment of Mouth-Throat Effects on Regional Deposition in the Upper Tracheobronchial Airways
,”
J. Aerosol Sci.
,
117
, pp.
164
188
.10.1016/j.jaerosci.2017.12.001
66.
Milenkovic
,
J.
,
Alexopoulos
,
A. H.
, and
Kiparissides
,
C.
,
2014
, “
Deposition and Fine Particle Production During Dynamic Flow in a Dry Powder Inhaler: A CFD Approach
,”
Int. J. Pharm.
,
461
(
1–2
), pp.
129
136
.10.1016/j.ijpharm.2013.11.047
You do not currently have access to this content.