Abstract

A serious complication in aortic dissection is dynamic obstruction of the true lumen (TL). Dynamic obstruction results in malperfusion, a blockage of blood flow to a vital organ. Clinical data reveal that increases in central blood pressure promote dynamic obstruction. However, the mechanisms by which high pressures result in TL collapse are underexplored and poorly understood. Here, we developed a computational model to investigate biomechanical and hemodynamical factors involved in Dynamic obstruction. We hypothesize that relatively small pressure gradient between TL and false lumen (FL) are sufficient to displace the flap and induce obstruction. An idealized fluid–structure interaction model of type B aortic dissection was created. Simulations were performed under mean cardiac output while inducing dynamic changes in blood pressure by altering FL outflow resistance. As FL resistance increased, central aortic pressure increased from 95.7 to 115.3 mmHg. Concurrent with blood pressure increase, flap motion was observed, resulting in TL collapse, consistent with clinical findings. The maximum pressure gradient between TL and FL over the course of the dynamic obstruction was 4.5 mmHg, consistent with our hypothesis. Furthermore, the final stage of dynamic obstruction was very sudden in nature, occurring over a short time (<1 s) in our simulation, consistent with the clinical understanding of this dramatic event. Simulations also revealed sudden drops in flow and pressure in the TL in response to the flap motion, consistent with first stages of malperfusion. To our knowledge, this study represents the first computational analysis of potential mechanisms driving dynamic obstruction in aortic dissection.

References

1.
Goldfinger
,
J. Z.
,
Halperin
,
J. L.
,
Marin
,
M. L.
,
Stewart
,
A. S.
,
Eagle
,
K. A.
, and
Fuster
,
V.
,
2014
, “
Thoracic Aortic Aneurysm and Dissection
,”
J. Am. Coll. Cardiol.
,
64
(
16
), pp.
1725
1739
.10.1016/j.jacc.2014.08.025
2.
Meszaros
,
I.
,
Morocz
,
J.
,
Szlavi
,
J.
,
Schmidt
,
J.
,
Tornoci
,
L.
,
Nagy
,
L.
, and
Szép
,
L.
,
2000
, “
Epidemiology and Clinicopathology of Aortic Dissection
,”
Chest
,
117
(
5
), pp.
1271
1278
.10.1378/chest.117.5.1271
3.
Peterss
,
S.
,
Mansour
,
A. M.
,
Ross
,
J. A.
,
Vaitkeviciute
,
I.
,
Charilaou
,
P.
,
Dumfarth
,
J.
,
Fang
,
H.
,
Ziganshin
,
B. A.
,
Rizzo
,
J. A.
,
Adeniran
,
A. J.
, and
Elefteriades
,
J. A.
,
2016
, “
Changing Pathology of the Thoracic Aorta From Acute to Chronic Dissection: Literature Review and Insights
,”
J. Am. Coll. Cardiol.
,
68
(
10
), pp.
1054
1065
.10.1016/j.jacc.2016.05.091
4.
Daily
,
P. O.
,
Trueblood
,
H. W.
,
Stinson
,
E. B.
,
Wuerflein
,
R. D.
, and
Shumway
,
N. E.
,
1970
, “
Management of Acute Aortic Dissections
,”
Ann. Thorac. Surg.
,
10
(
3
), pp.
237
247
.10.1016/S0003-4975(10)65594-4
5.
Geirsson
,
A.
,
Szeto
,
W. Y.
,
Pochettino
,
A.
,
McGarvey
,
M. L.
,
Keane
,
M. G.
,
Woo
,
Y. J.
,
Augoustides
,
J. G.
, and
Bavaria
,
J. E.
,
2007
, “
Significance of Malperfusion Syndromes Prior to Contemporary Surgical Repair for Acute Type A Dissection: Outcomes and Need for Additional Revascularizations
,”
Eur. J. Cardio-Thorac. Surg.
,
32
(
2
), pp.
255
262
.10.1016/j.ejcts.2007.04.012
6.
Fattori
,
R.
,
Tsai
,
T. T.
,
Myrmel
,
T.
,
Evangelista
,
A.
,
Cooper
,
J. V.
,
Trimarchi
,
S.
,
Li
,
J.
,
Lovato
,
L.
,
Kische
,
S.
,
Eagle
,
K. A.
,
Isselbacher
,
E. M.
, and
Nienaber
,
C. A.
,
2008
, “
Complicated Acute Type B Dissection: Is Surgery Still the Best Option? A Report From the International Registry of Acute Aortic Dissection
,”
JACC Cardiovasc. Intervent.
,
1
(
4
), pp.
395
402
.10.1016/j.jcin.2008.04.009
7.
Suzuki
,
T.
,
Mehta
,
R. H.
,
Ince
,
H.
,
Nagai
,
R.
,
Sakomura
,
Y.
,
Weber
,
F.
,
Sumiyoshi
,
T.
,
Bossone
,
E.
,
Trimarchi
,
S.
,
Cooper
,
J. V.
,
Smith
,
D. E.
,
Isselbacher
,
E. M.
,
Eagle
,
K. A.
, and
Nienaber
,
C. A.
,
2003
, “
Clinical Profiles and Outcomes of Acute Type B Aortic Dissection in the Current Era: Lessons From the International Registry of Aortic Dissection (IRAD)
,”
Circulation
,
108
(
10_suppl_1
), pp.
II
312
.10.1161/01.cir.0000087386.07204.09
8.
Jonker
,
F. H.
,
Patel
,
H. J.
,
Upchurch
,
G. R.
,
Williams
,
D. M.
,
Montgomery
,
D. G.
,
Gleason
,
T. G.
,
Braverman
,
A. C.
,
Sechtem
,
U.
,
Fattori
,
R.
,
Di Eusanio
,
M.
,
Evangelista
,
A.
,
Nienaber
,
C. A.
,
Isselbacher
,
E. M.
,
Eagle
,
K. A.
, and
Trimarchi
,
S.
,
2015
, “
Acute Type B Aortic Dissection Complicated by Visceral Ischemia
,”
J. Thorac. Cardiovasc. Surg.
,
149
(
4
), pp.
1081
1086
.10.1016/j.jtcvs.2014.11.012
9.
Fann
,
J. I.
,
Sarris
,
G. E.
,
Mitchell
,
R. S.
,
Shumway
,
N. E.
,
Stinson
,
E. B.
,
Oyer
,
P. E.
, and
Miller
,
D. C.
,
1990
, “
Treatment of Patients With Aortic Dissection Presenting With Peripheral Vascular Complications
,”
Ann. Surgery
,
212
(
6
), pp.
705
713
.10.1097/00000658-199012000-00009
10.
Williams
,
D. M.
,
Lee
,
D. Y.
,
Hamilton
,
B. H.
,
Marx
,
M. V.
,
Narasimham
,
D. L.
,
Kazanjian
,
S. N.
,
Prince
,
M. R.
,
Andrews
,
J. C.
,
Cho
,
K. J.
, and
Deeb
,
G. M.
,
1997
, “
The Dissected Aorta: Part III. Anatomy and Radiologic Diagnosis of Branch-Vessel Compromise
,”
Radiology
,
203
(
1
), pp.
37
44
.10.1148/radiology.203.1.9122414
11.
Chen
,
D.
,
Müller-Eschner
,
M.
,
Kotelis
,
D.
,
Böckler
,
D.
,
Ventikos
,
Y.
, and
Tengg-Kobligk
,
H. V.
,
2013
, “
A Longitudinal Study of Type-B Aortic Dissection and Endovascular Repair Scenarios: Computational Analyses
,”
Med. Eng. Phys.
,
35
(
9
), pp.
1321
1330
.10.1016/j.medengphy.2013.02.006
12.
Abazari
,
M. A.
,
Rafieianzab
,
D.
,
Soltani
,
M.
, and
Alimohammadi
,
M.
,
2021
, “
The Effect of Beta-Blockers on Hemodynamic Parameters in Patient-Specific Blood Flow Simulations of Type-B Aortic Dissection: A Virtual Study
,”
Sci. Rep.
,
11
(
1
), pp.
1
14
.10.1038/s41598-021-95315-w
13.
Menichini
,
C.
,
Cheng
,
Z.
,
Gibbs
,
R. G.
, and
Xu
,
X. Y.
,
2016
, “
Predicting False Lumen Thrombosis in Patient-Specific Models of Aortic Dissection
,”
J. R. Soc. Interface
,
13
(
124
), p.
20160759
.10.1098/rsif.2016.0759
14.
Osswald
,
A.
,
Karmonik
,
C.
,
Anderson
,
J. R.
,
Rengier
,
F.
,
Karck
,
M.
,
Engelke
,
J.
,
Kallenbach
,
K.
,
Kotelis
,
D.
,
Partovi
,
S.
,
Böckler
,
D.
, and
Ruhparwar
,
A.
,
2017
, “
Elevated Wall Shear Stress in Aortic Type B Dissection May Relate to Retrograde Aortic Type A Dissection: A Computational Fluid Dynamics Pilot Study
,”
Eur. J. Vasc. Endovascular Surg.
,
54
(
3
), pp.
324
330
.10.1016/j.ejvs.2017.06.012
15.
Dillon-Murphy
,
D.
,
Noorani
,
A.
,
Nordsletten
,
D.
, and
Figueroa
,
C. A.
,
2016
, “
Multi-Modality Image-Based Computational Analysis of Haemodynamics in Aortic Dissection
,”
Biomech. Model. Mechanobiol.
,
15
(
4
), pp.
857
876
.10.1007/s10237-015-0729-2
16.
Cheng
,
Z.
,
Riga
,
C.
,
Chan
,
J.
,
Hamady
,
M.
,
Wood
,
N. B.
,
Cheshire
,
N. J.
,
Xu
,
Y.
, and
Gibbs
,
R. G.
,
2013
, “
Initial Findings and Potential Applicability of Computational Simulation of the Aorta in Acute Type B Dissection
,”
J. Vasc. Surg.
,
57
(
2
), pp.
35S
43S
.10.1016/j.jvs.2012.07.061
17.
Ahmed
,
S. B.
,
Dillon-Murphy
,
D.
, and
Figueroa
,
C. A.
,
2016
, “
Computational Study of Anatomical Risk Factors in Idealized Models of Type B Aortic Dissection
,”
Eur. J. Vasc. Endovascular Surg.
,
52
(
6
), pp.
736
745
.10.1016/j.ejvs.2016.07.025
18.
Cheng
,
Z.
,
Wood
,
N. B.
,
Gibbs
,
R. G.
, and
Xu
,
X. Y.
,
2015
, “
Geometric and Flow Features of Type B Aortic Dissection: Initial Findings and Comparison of Medically Treated and Stented Cases
,”
Ann. Biomed. Eng.
,
43
(
1
), pp.
177
189
.10.1007/s10439-014-1075-8
19.
Alimohammadi
,
M.
,
Sherwood
,
J. M.
,
Karimpour
,
M.
,
Agu
,
O.
,
Balabani
,
S.
, and
Díaz-Zuccarini
,
V.
,
2015
, “
Aortic Dissection Simulation Models for Clinical Support: Fluid-Structure Interaction Vs. Rigid Wall Models
,”
Biomed. Eng. Online
,
14
(
1
), pp.
1
16
.10.1186/s12938-015-0032-6
20.
Bonfanti
,
M.
,
Balabani
,
S.
,
Greenwood
,
J. P.
,
Puppala
,
S.
,
Homer-Vanniasinkam
,
S.
, and
Díaz-Zuccarini
,
V.
,
2017
, “
Computational Tools for Clinical Support: A Multi-Scale Compliant Model for Haemodynamic Simulations in an Aortic Dissection Based on Multi-Modal Imaging Data
,”
J. R. Soc. Interface
,
14
(
136
), p.
20170632
.10.1098/rsif.2017.0632
21.
Qiao
,
Y.
,
Zeng
,
Y.
,
Ding
,
Y.
,
Fan
,
J.
,
Luo
,
K.
, and
Zhu
,
T.
,
2019
, “
Numerical Simulation of Two-Phase Non-Newtonian Blood Flow With Fluid-Structure Interaction in Aortic Dissection
,”
Comput. Methods Biomech. Biomed. Eng.
,
22
(
6
), pp.
620
630
.10.1080/10255842.2019.1577398
22.
Bonfanti
,
M.
,
Balabani
,
S.
,
Alimohammadi
,
M.
,
Agu
,
O.
,
Homer-Vanniasinkam
,
S.
, and
Díaz-Zuccarini
,
V.
,
2018
, “
A Simplified Method to Account for Wall Motion in Patient-Specific Blood Flow Simulations of Aortic Dissection: Comparison With Fluid-Structure Interaction
,”
Med. Eng. Phys.
,
58
, pp.
72
79
.10.1016/j.medengphy.2018.04.014
23.
Qiao
,
A.
,
Yin
,
W.
, and
Chu
,
B.
,
2015
, “
Numerical Simulation of Fluid–Structure Interaction in Bypassed DeBakey III Aortic Dissection
,”
Comput. Methods Biomech. Biomed. Eng.
,
18
(
11
), pp.
1173
1180
.10.1080/10255842.2014.881806
24.
Bäumler
,
K.
,
Vedula
,
V.
,
Sailer
,
A. M.
,
Seo
,
J.
,
Chiu
,
P.
,
Mistelbauer
,
G.
,
Chan
,
F. P.
,
Fischbein
,
M. P.
,
Marsden
,
A. L.
, and
Fleischmann
,
D.
,
2020
, “
Fluid–Structure Interaction Simulations of Patient-Specific Aortic Dissection
,”
Biomech. Model. Mechanobiol.
,
19
(
5
), pp.
1607
1628
.10.1007/s10237-020-01294-8
25.
Roccabianca
,
S.
,
Figueroa
,
C. A.
,
Tellides
,
G.
, and
Humphrey
,
J. D.
,
2014
, “
Quantification of Regional Differences in Aortic Stiffness in the Aging Human
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
618
634
.10.1016/j.jmbbm.2013.01.026
26.
Vlachopoulos
,
C.
,
O'Rourke
,
M.
, and
Nichols
,
W. W.
,
2011
,
McDonald's Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles
,
CRC Press
, Boca Raton, FL.
27.
Lantz
,
B. M.
,
Foerster
,
J. M.
,
Link
,
D. P.
, and
Holcroft
,
J. W.
,
1981
, “
Regional Distribution of Cardiac Output: Normal Values in Man Determined by Video Dilution Technique
,”
Am. J. Roentgenol.
,
137
(
5
), pp.
903
907
.10.2214/ajr.137.5.903
28.
Hathcock
,
J. J.
,
2006
, “
Flow Effects on Coagulation and Thrombosis
,”
Aeterioscler., Thrombosis, Vascular Biol.
,
26
(
8
), pp.
1729
1737
.10.1161/01.ATV.0000229658.76797.30
29.
Jouppila
,
P.
, and
Kirkinen
,
P.
,
1984
, “
Increased Vascular Resistance in the Descending Aorta of the Human Fetus in Hypoxia
,”
BJOG Int. J. Obstetrics Gynaecol.
,
91
(
9
), pp.
853
856
.10.1111/j.1471-0528.1984.tb03696.x
30.
Goulopoulou
,
S.
, and
Webb
,
R. C.
,
2014
, “
Symphony of Vascular Contraction: How Smooth Muscle Cells Lose Harmony to Signal Increased Vascular Resistance in Hypertension
,”
Hypertension
,
63
(
3
), pp.
e33
e39
.10.1161/HYPERTENSIONAHA.113.02444
31.
Humphrey
,
J. D.
,
Harrison
,
D. G.
,
Figueroa
,
C. A.
,
Lacolley
,
P.
, and
Laurent
,
S.
,
2016
, “
Central Artery Stiffness in Hypertension and Aging: A Problem With Cause and Consequence
,”
Circ. Res.
,
118
(
3
), pp.
379
381
.10.1161/CIRCRESAHA.115.307722
32.
Ruland
,
S.
, and
Aiyagari
,
V.
,
2007
, “
Cerebral Autoregulation and Blood Pressure Lowering
,”
Hypertension
,
49
(
5
), pp.
977
978
.10.1161/HYPERTENSIONAHA.107.087502
33.
Arthurs
,
C. J.
,
Lau
,
K. D.
,
Asrress
,
K. N.
,
Redwood
,
S. R.
, and
Figueroa
,
C. A.
,
2016
, “
A Mathematical Model of Coronary Blood Flow Control: Simulation of Patient-Specific Three-Dimensional Hemodynamics During Exercise
,”
Am. J. Physiol. Heart Circ. Physiol.
,
310
(
9
), pp.
H1242
H1258
.10.1152/ajpheart.00517.2015
34.
Lau
,
K. D.
, and
Figueroa
,
C. A.
,
2015
, “
Simulation of Short-Term Pressure Regulation During the Tilt Test in a Coupled 3D–0D Closed-Loop Model of the Circulation
,”
Biomech. Model. Mechanobiol.
,
14
(
4
), pp.
915
929
.10.1007/s10237-014-0645-x
35.
Figueroa
,
C. A.
,
Taylor
,
C. A.
, and
Marsden
,
A. L.
,
2017
, “
Blood Flow
,”
Encyclopedia of Computational Mechanics
, 2nd ed., American Cancer Society, Atlanta, GA, pp.
1
31
.
36.
Ravera
,
M.
,
Re
,
M.
,
Deferrari
,
L.
,
Vettoretti
,
S.
, and
Deferrari
,
G.
,
2006
, “
Importance of Blood Pressure Control in Chronic Kidney Disease
,”
J. Am. Soc. Nephrol.
,
17
(
4 suppl 2
), pp.
S98
S103
.10.1681/ASN.2005121319
37.
Peskin
,
C. S.
,
2002
, “
The Immersed Boundary Method
,”
Acta Numer.
,
11
, pp.
479
517
.10.1017/S0962492902000077
38.
Quint
,
L. E.
,
Platt
,
J. F.
,
Sonnad
,
S. S.
,
Deeb
,
G. M.
, and
Williams
,
D. M.
,
2003
, “
Aortic Intimal Tears: Detection With Spiral Computed Tomography
,”
J. Endovascular Ther.
,
10
(
3
), pp.
505
510
.10.1177/152660280301000315
39.
Khoynezhad
,
A.
,
Walot
,
I.
,
Kruse
,
M. J.
,
Rapae
,
T.
,
Donayre
,
C. E.
, and
White
,
R. A.
,
2010
, “
Distribution of Intimomedial Tears in Patients With Type B Aortic Dissection
,”
J. Vascular Surg.
,
52
(
3
), pp.
562
568
.10.1016/j.jvs.2010.04.036
40.
Taylor
,
C. A.
, and
Figueroa
,
C. A.
,
2009
, “
Patient-Specific Modeling of Cardiovascular Mechanics
,”
Annu. Rev. Biomed. Eng.
,
11
(
1
), pp.
109
134
.10.1146/annurev.bioeng.10.061807.160521
41.
Cuomo
,
F.
,
Roccabianca
,
S.
,
Dillon-Murphy
,
D.
,
Xiao
,
N.
,
Humphrey
,
J. D.
, and
Figueroa
,
C. A.
,
2017
, “
Effects of Age-Associated Regional Changes in Aortic Stiffness on Human Hemodynamics Revealed by Computational Modeling
,”
PLoS One
,
12
(
3
), p.
e0173177
.10.1371/journal.pone.0173177
You do not currently have access to this content.