Abstract

Neurovascular coupling (NVC) is the ability to locally adjust vascular resistance as a function of neuronal activity. Recent experiments have illustrated that NVC is partially independent of metabolic signals. In addition, nitric oxide (NO) has been shown in some instances to provide an important mechanism in altering vascular resistance. An extension to the original model of NVC [1] has been developed to include the activation of both somatosensory neurons and GABAergic interneurons and to investigate the role of NO and the delicate balance of GABA and neuronal peptide enzymes (NPY) pathways. The numerical model is compared to murine experimental data that provides time-dependent profiles of oxy, de-oxy, and total-hemoglobin. The results indicate a delicate balance that exists between GABA and NPY when nNOS interneurons are activated mediated by NO. Whereas somatosensory neurons (producing potassium into the extracellular space) do not seem to be effected by the inhibition of NO. Further work will need to be done to investigate the role of NO when stimulation periods are increased substantially from the short pulses of 2 s as used in the above experiments.

References

1.
Kenny
,
A.
,
Plank
,
M. J.
, and
David
,
T.
,
2018
, “
The Role of Astrocytic Calcium and TRPV4 Channels in Neurovascular Coupling
,”
J. Comput. Neurosci.
,
44
(
1
), pp.
97
114
.10.1007/s10827-017-0671-7
2.
Leithner
,
C.
,
Royl
,
G.
,
Offenhauser
,
N.
,
Füchtemeier
,
M.
,
Kohl-Bareis
,
M.
,
Villringer
,
A.
,
Dirnagl
,
U.
, and
Lindauer
,
U.
,
2010
, “
Pharmacological Uncoupling of Activation Induced Increases in CBF and CMRO2
,”
J. Cereb. Blood Flow Metab.
,
30
(
2
), pp.
311
322
.10.1038/jcbfm.2009.211
3.
Lindauer
,
U.
,
Leithner
,
C.
,
Kaasch
,
H.
,
Rohrer
,
B.
,
Foddis
,
M.
,
Füchtemeier
,
M.
,
Offenhauser
,
N.
,
Steinbrink
,
J.
,
Royl
,
G.
,
Kohl-Bareis
,
M.
, and
Dirnagl
,
U.
,
2010
, “
Neurovascular Coupling in Rat Brain Operates Independent of Hemoglobin Deoxygenation
,”
J. Cereb. Blood Flow Metab.
,
30
(
4
), pp.
757
768
.10.1038/jcbfm.2009.259
4.
Mintun
,
M. A.
,
Lundstrom
,
B. N.
,
Snyder
,
A. Z.
,
Vlassenko
,
A. G.
,
Shulman
,
G. L.
, and
Raichle
,
M. E.
,
2001
, “
Blood Flow and Oxygen Delivery to Human Brain During Functional Activity: Theoretical Modeling and Experimental Data
,”
Proc. Natl. Acad. Sci. U. S. A.
,
98
(
12
), pp.
6859
6864
.10.1073/pnas.111164398
5.
Powers
,
W. J.
,
Hirsch
,
I. B.
, and
Cryer
,
P. E.
,
1996
, “
Effect of Stepped Hypoglycemia on Regional Cerebral Blood Flow Response to Physiological Brain Activation
,”
Am. J. Physiol.
,
270
(
2
), pp.
H554
H559
.10.1152/ajpheart.1996.270.2.H554
6.
Makani
,
S.
, and
Chesler
,
M.
,
2010
, “
Rapid Rise of Extracellular pH Evoked by Neural Activity Is Generated by the Plasma Membrane Calcium ATPase
,”
J. Neurophysiol.
,
103
(
2
), pp.
667
676
.10.1152/jn.00948.2009
7.
Roy
,
C. S.
, and
Sherrington
,
C. S.
,
1890
, “
On the Regulation of the Blood-Supply of the Brain
,”
J. Physiol.
,
11
(
1–2
), pp.
85
158
.10.1113/jphysiol.1890.sp000321
8.
Filosa
,
J. A.
,
Bonev
,
A. D.
,
Straub
,
S. V.
,
Meredith
,
A. L.
,
Wilkerson
,
M. K.
,
Aldrich
,
R. W.
, and
Nelson
,
M. T.
,
2006
, “
Local Potassium Signaling Couples Neuronal Activity to Vasodilation in the Brain
,”
Nat. Neurosci.
,
9
(
11
), pp.
1397
1403
.10.1038/nn1779
9.
Attwell
,
D.
,
Buchan
,
A. M.
,
Charpak
,
S.
,
Lauritzen
,
M.
,
MacVicar
,
B. A.
, and
Newman
,
E. A.
,
2010
, “
Glial and Neuronal Control of Brain Blood Flow
,”
Nature
,
468
(
7321
), pp.
232
243
.10.1038/nature09613
10.
Longden
,
T. A.
,
Hill-Eubanks
,
D. C.
, and
Nelson
,
M. T.
,
2016
, “
Ion Channel Networks in the Control of Cerebral Blood Flow
,”
J. Cereb. Blood Flow Metab.
,
36
(
3
), pp.
492
512
.10.1177/0271678X15616138
11.
Filosa
,
J. A.
, and
Blanco
,
V. M.
,
2007
, “
Neurovascular Coupling in the Mammalian Brain
,”
Exp. Physiol.
,
92
(
4
), pp.
641
646
.10.1113/expphysiol.2006.036368
12.
Dormanns
,
K.
,
van Disseldorp
,
E. M. J.
,
Brown
,
R. G.
, and
David
,
T.
,
2015
, “
Neurovascular Coupling and the Influence of Luminal Agonists Via the Endothelium
,”
J. Theor. Biol.
,
364
, pp.
49
70
.10.1016/j.jtbi.2014.08.029
13.
Dormanns
,
K.
,
Brown
,
R. G.
, and
David
,
T.
,
2016
, “
The Role of Nitric Oxide in Neurovascular Coupling
,”
J. Theor. Biol.
,
394
, pp.
1
17
.10.1016/j.jtbi.2016.01.009
14.
Mathias
,
E. J.
,
Plank
,
M. J.
, and
David
,
T.
,
2017
, “
A Model of Neurovascular Coupling and the BOLD Response: PART I
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
5
), pp.
508
518
.10.1080/10255842.2016.1255732
15.
Mathias
,
E. J.
,
Plank
,
M. J.
, and
David
,
T.
,
2017
, “
A Model of Neurovascular Coupling and the BOLD Response: PART II
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
5
), pp.
519
529
.10.1080/10255842.2016.1255733
16.
Hosford
,
P. S.
, and
Gourine
,
A. V.
,
2019
, “
What Is the Key Mediator of the Neurovascular Coupling Response?
,”
Neurosci. Biobehav. Rev.
,
96
, pp.
174
181
.10.1016/j.neubiorev.2018.11.011
17.
Miller
,
T. W.
,
Isenberg
,
J. S.
,
Shih
,
H. B.
,
Wang
,
Y.
, and
Roberts
,
D. D.
,
2010
, “
Amyloid-β Inhibits No-cGMP Signaling in a CD36- and CD47-Dependent Manner
,”
PLoS One
,
5
(
12
), p.
e15686
.10.1371/journal.pone.0015686
18.
Lee
,
L.
,
Boorman
,
L.
,
Glendenning
,
E.
,
Shen
,
C.
,
Berwick
,
J.
, and
Howarth
,
C.
,
2022
, “
Nitric Oxide is Not Responsible for the Initial Sensory-Induced Neurovascular Coupling Response in Mouse Cortex
,”
BioRxiv
, epub.10.1101/2022.05.24.493260
19.
Berwick
,
J.
,
Johnston
,
D.
,
Jones
,
M.
,
Martindale
,
J.
,
Redgrave
,
P.
,
McLoughlin
,
N.
,
Schiessl
,
I.
, and
Mayhew
,
J. E. W.
,
2005
, “
Neurovascular Coupling Investigated With Two-Dimensional Optical Imaging Spectroscopy in Rat Whisker Barrel Cortex
,”
Eur. J. Neurosci.
,
22
(
7
), pp.
1655
1666
.10.1111/j.1460-9568.2005.04347.x
20.
Bannerman
,
D.
,
Chapman
,
P.
,
Kelly
,
P.
,
Butcher
,
S.
, and
Morris
,
R.
,
1994
, “
Inhibition of Nitric Oxide Synthase Does Not Prevent the Induction of Long-Term Potentiation In Vivo
,”
J. Neurosci.
,
14
(
12
), pp.
7415
7425
.10.1523/JNEUROSCI.14-12-07415.1994
21.
Vega Rasgado
,
L. A.
,
Reyes
,
G. C.
, and
Vega Díaz
,
F.
,
2018
, “
Role of Nitric Oxide Synthase on Brain GABA Transaminase Activity and GABA Levels
,”
Acta Pharm.
,
68
(
3
), pp.
349
359
.10.2478/acph-2018-0022
22.
Biscoe
,
T. J.
, and
Duchen
,
M. R.
,
1985
, “
The Anion Selectivity of GABA-Mediated Post Synaptic Potentials in Mouse Hippocampus Cells
,”
Q. J. Exp. Physiol.
,
70
(
3
), pp.
305
312
.10.1113/expphysiol.1985.sp002916
23.
Koenigsberger
,
M.
,
Sauser
,
R.
,
Lamboley
,
M.
,
Bény
,
J.-L. L.
,
Meister
,
J.-J. J.
, and
Be
,
J.-L.
,
2004
, “
Ca2+ Dynamics in a Population of Smooth Muscle Cells: Modeling the Recruitment and Synchronization
,”
Biophys. J.
,
87
(
1
), pp.
92
104
.10.1529/biophysj.103.037853
24.
Paul
,
V.
, and
Jayakumar
,
A. R.
,
2000
, “
A Role of Nitric Oxide as an Inhibitor of γ-Aminobutyric Acid Transaminase in Rat Brain
,”
Brain Res. Bull.
,
51
(
1
), pp.
43
46
.10.1016/S0361-9230(99)00206-3
25.
Mathias
,
E. J.
,
Kenny
,
A.
,
Plank
,
M. J.
, and
David
,
T.
,
2018
, “
Integrated Models of Neurovascular Coupling and BOLD Signals: Responses for Varying Neural Activations
,”
NeuroImage
,
174
, pp.
69
86
.10.1016/j.neuroimage.2018.03.010
26.
Buxton
,
R. B.
, and
Frank
,
L. R.
,
1997
, “
A Model for the Coupling Between Cerebral Blood Flow and Oxygen Metabolism During Neural Stimulation
,”
J. Cereb. Blood Flow Metab.
,
17
(
1
), pp.
64
72
.10.1097/00004647-199701000-00009
27.
Liu
,
X.
,
Li
,
C.
,
Falck
,
J. R.
,
Roman
,
R. J.
,
Harder
,
D. R.
, and
Koehler
,
R. C.
,
2008
, “
Interaction of Nitric Oxide, 20-HETE, and EETs During Functional Hyperemia in Whisker Barrel Cortex
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
295
(
2
), pp.
H619
H631
.10.1152/ajpheart.01211.2007
You do not currently have access to this content.