Abstract

Transcatheter aortic valve replacements (TAVRs) are an increasingly common treatment for aortic valve disease due to their minimally invasive delivery. As TAVR designs require thinner leaflets to facilitate catheter-based delivery, they experience greater leaflet operational stresses and potentially greater durability issues than conventional surgical valves. Yet, our understanding of TAVR durability remains largely unexplored. Currently, preclinical TAVR durability is evaluated within an ISO:5840 compliant accelerated wear tester (AWT) up to a required 200 × 106 cycles, corresponding to approximately five years in vivo. While AWTs use high cycle frequencies (10–20 Hz) to achieve realistic timeframes, the resulting valve loading behaviors and fluid dynamics are not representative of the in vivo environment and thus may not accurately predict failure mechanisms. Despite the importance of fatigue and failure predictions for replacement heart valves, surprisingly, little quantitative information exists on the dynamic AWT environment. To better understand this environment, we examined frequency and diastolic period effects for the first time using high-speed enface imaging and particle image velocimetry to quantify valve motion and flow, respectively, using a Durapulse™ AWT at frequencies of 10, 15, and 20 Hz. Regardless of operating condition, no waveform achieved a physiologically relevant transvalvular loading pressure, despite having an ISO compliant geometric orifice area (GOA) and waveform. General fluid mechanics were consistent with in vivo but the AWT geometry developed secondary flow structures, which could impact mechanical loading. Therefore, the nonphysiologic loading and variability induced by changes in operating condition must be carefully regulated to ensure physiologically relevant fatigue.

References

1.
Moore
,
M.
,
Chen
,
J.
,
Mallow
,
P.
, and
Rizzo
,
J.
,
2016
, “
The Direct Health-Care Burden of Valvular Heart Disease: Evidence From U.S. National Survey Data
,”
ClinicoEcon. Outcomes Res.
,
8
, pp.
613
627
.10.2147/CEOR.S112691
2.
Hinton
,
R. B.
, and
Yutzey
,
K. E.
,
2011
, “
Heart Valve Structure and Function in Development and Disease
,”
Annu. Rev. Physiol.
,
73
(
1
), pp.
29
46
.10.1146/annurev-physiol-012110-142145
3.
Dasi
,
L. P.
,
Simon
,
H. A.
,
Sucosky
,
P.
, and
Yoganathan
,
A.
,
2009
, “
Fluid Mechanics of Artificial Heart Valves
,”
Clin. Exp. Pharmacol. Physiol.
,
36
(
2
), pp.
225
237
.10.1111/j.1440-1681.2008.05099.x
4.
Leon
,
M. B.
,
Smith
,
C. R.
,
Mack
,
M.
,
Miller
,
C.
,
Moses
,
J.
,
Svensson
,
L. G.
,
Tuzcu
,
E. M.
, et al.,
2010
, “
Transcatheter Aortic Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery
,”
New Engl. J. Med.
,
363
(
17
), pp.
1597
1607
.10.1056/NEJMoa1008232
5.
Fellerbaum
,
M.
,
2019
,
FDA Expands Indication for Several Transcatheter Heart Valves to Patients at Low Risk for Death or Major Complications Associated With Open Heart Surgery
, Food and Drug Administration, Silver Spring, MD.
6.
Mack
,
M. J.
,
Leon
,
M. B.
,
Thourani
,
V. H.
,
Makkar
,
R.
,
Kodali
,
S. K.
,
Russo
,
M.
,
Kapadia
,
S. R.
, et al.,
2019
, “
Transcatheter Aortic-Valve Replacement With a Balloon-Expandable Valve in Low-Risk Patients
,”
New Engl. J. Med.
,
380
(
18
), pp.
1695
1705
.10.1056/NEJMoa1814052
7.
ISO
,
2021
,
Cardiovascular Implants-Cardiac Valve Prostheses: Heart Valve Substitutes Implanted by Transcatheter Techniques
, International Standards Organization, Geneva, Switzerland, Standard No. ISO:5840:3.
8.
Ponnaluri
,
S. V.
,
Deutsch
,
S.
,
Sacks
,
M. S.
, and
Manning
,
K. B.
,
2021
, “
Transcatheter Heart Valve Downstream Fluid Dynamics in an Accelerated Evaluation Environment
,”
Ann. Biomed. Eng.
,
49
(
9
), pp.
2170
2182
.10.1007/s10439-021-02751-w
9.
Wells
,
S. M.
,
Sellaro
,
T.
, and
Sacks
,
M. S.
,
2005
, “
Cyclic Loading Response of Bioprosthetic Heart Valves: Effects of Fixation Stress State on the Collagen Fiber Architecture
,”
Biomaterials
,
26
(
15
), pp.
2611
2619
.10.1016/j.biomaterials.2004.06.046
10.
Becsek
,
B.
,
Pietrasanta
,
L.
, and
Obrist
,
D.
,
2020
, “
Turbulent Systolic Flow Downstream of a Bioprosthetic Aortic Valve: Velocity Spectra, Wall Shear Stresses, and Turbulent Dissipation Rates
,”
Front. Physiol.
,
11
, pp. 1–13.10.3389/fphys.2020.577188
11.
Rowlands
,
G. W.
,
Good
,
B. C.
,
Deutsch
,
S.
, and
Manning
,
K. B.
,
2018
, “
Characterizing the HeartMate II Left Ventricular Assist Device Outflow Using Particle Image Velocimetry
,”
ASME J. Biomech. Eng.
,
140
(
7
), pp.
1
13
.10.1115/1.4039822
12.
Taylor
,
J. O.
,
Good
,
B. C.
,
Paterno
,
A. V.
,
Hariharan
,
P.
,
Deutsch
,
S.
,
Malinauskas
,
R. A.
, and
Manning
,
K. B.
,
2016
, “
Analysis of Transitional and Turbulent Flow Through the FDA Benchmark Nozzle Model Using Laser Doppler Velocimetry
,”
Cardiovasc. Eng. Technol.
,
7
(
3
), pp.
191
209
.10.1007/s13239-016-0270-1
13.
Garcia
,
D.
,
Pibarot
,
P.
, and
Durand
,
L.-G.
,
2005
, “
Analytical Modeling of the Instantaneous Pressure Gradient Across the Aortic Valve
,”
J. Biomech.
,
38
(
6
), pp.
1303
1311
.10.1016/j.jbiomech.2004.06.018
14.
Saikrishnan
,
N.
,
Gupta
,
S.
, and
Yoganathan
,
A. P.
,
2013
, “
Hemodynamics of the Boston Scientific LotusTM Valve: An In Vitro Study
,”
Cardiovasc. Eng. Technol.
,
4
(
4
), pp.
427
439
.10.1007/s13239-013-0163-5
15.
Spethmann
,
S.
,
Dreger
,
H.
,
Schattke
,
S.
,
Baldenhofer
,
G.
,
Saghabalyan
,
D.
,
Stangl
,
V.
,
Laule
,
M.
, et al.,
2012
, “
Doppler Haemodynamics and Effective Orifice Areas of Edwards SAPIEN and CoreValve Transcatheter Aortic Valves
,”
Eur. Heart J. Cardiovasc. Imaging
,
13
(
8
), pp.
690
696
.10.1093/ehjci/jes021
16.
Barakat
,
M.
,
Dvir
,
D.
, and
Azadani
,
A. N.
,
2018
, “
Fluid Dynamic Characterization of Transcatheter Aortic Valves Using Particle Image Velocimetry
,”
Artif. Organs
,
42
(
11
), pp.
E357
E368
.10.1111/aor.13290
17.
Hatoum
,
H.
,
Yousefi
,
A.
,
Lilly
,
S.
,
Maureira
,
P.
,
Crestanello
,
J.
, and
Dasi
,
L. P.
,
2018
, “
An In Vitro Evaluation of Turbulence After Transcatheter Aortic Valve Implantation
,”
J. Thorac. Cardiovasc. Surg.
,
156
(
5
), pp.
1837
1848
.10.1016/j.jtcvs.2018.05.042
18.
Smith
,
C. R.
,
Leon
,
M. B.
,
Mack
,
M. J.
,
Miller
,
C.
,
Moses
,
J. W.
,
Svensson
,
L.
,
Tuzcu
,
M.
, et al.,
2011
, “
Transcatheter Versus Surgical Aortic Valve Replacement in High Risk Patients
,”
New Engl. J. Med.
,
364
(
23
), pp.
2187
2198
.10.1056/NEJMoa1103510
19.
Leon
,
M. B.
,
Smith
,
C. R.
,
Mack
,
M. J.
,
Makkar
,
R. R.
,
Svensson
,
L. G.
,
Kodali
,
S. K.
,
Thourani
,
V. H.
, et al.,
2016
, “
Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients
,”
New Engl. J. Med.
,
374
(
17
), pp.
1609
1620
.10.1056/NEJMoa1514616
You do not currently have access to this content.