Abstract

Drug-coated balloon therapy is a minimally invasive endovascular approach to treat obstructive arterial disease, with increasing utilization in the peripheral circulation due to improved outcomes as compared to alternative interventional modalities. Broader clinical use of drug-coated balloons is limited by an incomplete understanding of device- and patient-specific determinants of treatment efficacy, including late outcomes that are mediated by postinterventional maladaptive inward arterial remodeling. To address this knowledge gap, we propose a predictive mathematical model of pressure-mediated femoral artery remodeling following drug-coated balloon deployment, with account of drug-based modulation of resident vascular cell phenotype and common patient comorbidities, namely, hypertension and endothelial cell dysfunction. Our results elucidate how postinterventional arterial remodeling outcomes are altered by the delivery of a traditional anti-proliferative drug, as well as by codelivery with an anti-contractile drug. Our findings suggest that codelivery of anti-proliferative and anti-contractile drugs could improve patient outcomes following drug-coated balloon therapy, motivating further consideration of novel payloads in next-generation devices.

References

1.
Gray
,
W. A.
, and
Granada
,
J. F.
,
2010
, “
Drug-Coated Balloons for the Prevention of Vascular Restenosis
,”
Circulation
,
121
(
24
), pp.
2672
2680
.10.1161/CIRCULATIONAHA.110.936922
2.
Sarode
,
K.
,
Spelber
,
D. A.
,
Bhatt
,
D. L.
,
Mohammad
,
A.
,
Prasad
,
A.
,
Brilakis
,
E. S.
, and
Banerjee
,
S.
,
2014
, “
Drug Delivering Technology for Endovascular Management of Infrainguinal Peripheral Artery Disease
,”
JACC Cardiovasc. Intervention
,
7
(
8
), pp.
827
839
.10.1016/j.jcin.2014.05.008
3.
Byrne
,
R.
,
Colleran
,
R.
,
Harada
,
Y.
, and
Cassese
,
S.
,
2016
, “
Drug Coated Balloon Angioplasty in the Treatment of Peripheral Arterial Disease
,”
Expert Rev. Med. Devices
,
13
(
6
), pp.
569
582
.10.1080/17434440.2016.1184969
4.
Byrne
,
R. A.
, and
Joner
,
M.
,
2015
, “
Drug-Coated Balloon Angioplasty for De Novo Stenosis: The Balloon Is Back…Reloaded!
,”
JACC Cardiovasc. Intervention
,
8
(
15
), pp.
2010
2012
.10.1016/j.jcin.2015.10.013
5.
Byrne
,
R. A.
,
Joner
,
M.
,
Alfonso
,
F.
, and
Kastrati
,
A.
,
2014
, “
Drug-Coated Balloon Therapy in Coronary and Peripheral Artery Disease
,”
Nat. Rev. Cardiol.
,
11
(
1
), pp.
13
23
.10.1038/nrcardio.2013.165
6.
Waksman
,
R.
, and
Pakala
,
R.
,
2009
, “
Drug-Eluting Balloon: The Comeback Kid?
,”
Circ.: Cardiovasc. Interventions
,
2
(
4
), pp.
352
358
.10.1161/CIRCINTERVENTIONS.109.873703
7.
Benjamin
,
E. J.
,
Blaha
,
M. J.
,
Chiuve
,
S. E.
,
Cushman
,
M.
,
Das
,
S. R.
,
Deo
,
R.
,
de Ferranti
,
S. D.
, et al.,
2017
, “
Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association
,”
Circulation
,
135
(
10
), pp.
e146
e603
.10.1161/CIR.0000000000000485
8.
McDermott
,
M. M.
,
Kerwin
,
D. R.
,
Liu
,
K.
,
Martin
,
G. J.
,
O'Brien
,
E.
,
Kaplan
,
H.
, and
Greenland
,
P.
,
2001
, “
Prevalence and Significance of Unrecognized Lower Extremity Peripheral Arterial Disease in General Medicine Practice
,”
J. Gen. Intern. Med.
,
16
(
6
), pp.
384
390
.10.1046/j.1525-1497.2001.016006384.x
9.
Criqui
,
M. H.
, and
Aboyans
,
V.
,
2015
, “
Epidemiology of Peripheral Artery Disease
,”
Circ. Res.
,
116
(
9
), pp.
1509
1526
.10.1161/CIRCRESAHA.116.303849
10.
Shazly
,
T.
,
Torres
,
W. M.
,
Secemsky
,
E. A.
,
Chitalia
,
V. C.
,
Jaffer
,
F. A.
, and
Kolachalama
,
V. B.
,
2022
, “
Understudied Factors in Drug-Coated Balloon Design and Evaluation: A Biophysical Perspective
,”
Bioeng. Transl. Med.
,
8
(
1
), p.
e10370
.10.1002/btm2.10370
11.
Mohapatra
,
A.
,
Saadeddin
,
Z.
,
Bertges
,
D. J.
,
Madigan
,
M. C.
,
Al-Khoury
,
G. E.
,
Makaroun
,
M. S.
, and
Eslami
,
M. H.
,
2020
, “
Nationwide Trends in Drug-Coated Balloon and Drug-Eluting Stent Utilization in the Femoropopliteal Arteries
,”
J. Vasc. Surg.
,
71
(
2
), pp.
560
566
.10.1016/j.jvs.2019.05.034
12.
Liu
,
C.
,
Wu
,
J.
,
Jia
,
H.
,
Lu
,
C.
,
Yan
,
J.
,
Li
,
W.
, and
Guo
,
M.
,
2022
, “
Efficacy and Safety of Drug-Coated Balloon Versus Non-Drug-Coated Balloon Combined With Bare Metal Stent Implantation in Treatment of Patients With Occlusions of the Superficial Femoral Artery: A Retrospective Study in Clinical Practice
,”
Am. J. Transl. Res.
,
14
(
2
), pp.
1305
1314
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902537/
13.
Stabile
,
E.
,
Gerardi
,
D.
,
Magliulo
,
F.
,
Zhelev
,
D.
,
Chervenkoff
,
V.
,
Taeymans
,
K.
,
Kotasov
,
D.
,
Goverde
,
P.
,
Giugliano
,
G.
,
Trimarco
,
B.
, and
Esposito
,
G.
,
2019
, “
One-Year Clinical Outcomes of the Legflow Drug-Coated Balloon for the Treatment of Femoropopliteal Occlusions Registry
,”
J. Endovascular Ther.
,
26
(
1
), pp.
26
30
.10.1177/1526602818823557
14.
Kayssi
,
A.
,
Al-Atassi
,
T.
,
Oreopoulos
,
G.
,
Roche-Nagle
,
G.
,
Tan
,
K. T.
, and
Rajan
,
D. K.
,
2016
, “
Drug-Eluting Balloon Angioplasty Versus Uncoated Balloon Angioplasty for Peripheral Arterial Disease of the Lower Limbs
,”
Cochrane Database Syst. Rev.
,
2016
(
8
), p.
CD011319
.10.1002/14651858.CD011319.pub2
15.
Jongsma
,
H.
,
Bekken
,
J. A.
,
de Vries
,
J. P.
,
Verhagen
,
H. J.
, and
Fioole
,
B.
,
2016
, “
Drug-Eluting Balloon Angioplasty Versus Uncoated Balloon Angioplasty in Patients With Femoropopliteal Arterial Occlusive Disease
,”
J. Vasc. Surg.
,
64
(
5
), pp.
1503
1514
.10.1016/j.jvs.2016.05.084
16.
Humphrey
,
J. D.
, and
Schwartz
,
M. A.
,
2021
, “
Vascular Mechanobiology: Homeostasis, Adaptation, and Disease
,”
Annu. Rev. Biomed. Eng.
,
23
(
1
), pp.
1
27
.10.1146/annurev-bioeng-092419-060810
17.
Taber
,
L. A.
, and
Eggers
,
D. W.
,
1996
, “
Theoretical Study of Stress-Modulated Growth in the Aorta
,”
J. Theor. Biol.
,
180
(
4
), pp.
343
357
.10.1006/jtbi.1996.0107
18.
Axel
,
D. I.
,
Kunert
,
W.
,
Göggelmann
,
C.
,
Oberhoff
,
M.
,
Herdeg
,
C.
,
Küttner
,
A.
,
Wild
,
D. H.
,
Brehm
,
B. R.
,
Riessen
,
R.
,
Köveker
,
G.
, and
Karsch
,
K. R.
,
1997
, “
Paclitaxel Inhibits Arterial Smooth Muscle Cell Proliferation and Migration In Vitro and In Vivo Using Local Drug Delivery
,”
Circulation
,
96
(
2
), pp.
636
645
.10.1161/01.CIR.96.2.636
19.
Mulvany
,
M. J.
,
Baumbach
,
G. L.
,
Aalkjaer
,
C.
,
Heagerty
,
A. M.
,
Korsgaard
,
N.
,
Schiffrin
,
E. L.
, and
Heistad
,
D. D.
,
1996
, “
Vascular Remodeling
,”
Hypertension
,
28
(
3
), pp.
505
506
.https://pubmed.ncbi.nlm.nih.gov/8794840/
20.
Alford
,
P. W.
,
Humphrey
,
J. D.
, and
Taber
,
L. A.
,
2008
, “
Growth and Remodeling in a Thick-Walled Artery Model: Effects of Spatial Variations in Wall Constituents
,”
Biomech. Model. Mechanobiol.
,
7
(
4
), pp.
245
262
.10.1007/s10237-007-0101-2
21.
Rachev
,
A.
, and
Gleason
,
R. L.
, Jr.
,
2011
, “
Theoretical Study on the Effects of Pressure-Induced Remodeling on Geometry and Mechanical Non-Homogeneity of Conduit Arteries
,”
Biomech. Model. Mechanobiol.
,
10
(
1
), pp.
79
93
.10.1007/s10237-010-0219-5
22.
Rachev
,
A.
, and
Shazly
,
T.
,
2023
, “
A Mathematical Model of Maladaptive Inward Eutrophic Remodeling of Muscular Arteries in Hypertension
,”
ASME J. Biomech. Eng.
,
145
(
1
), p.
011012
.10.1115/1.4055109
23.
Rachev
,
A.
,
Taylor
,
W. R.
, and
Vito
,
R. P.
,
2013
, “
Calculation of the Outcomes of Remodeling of Arteries Subjected to Sustained Hypertension Using a 3D Two-Layered Model
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1539
1553
.10.1007/s10439-012-0727-9
24.
Rachev
,
A.
,
1997
, “
Theoretical Study of the Effect of Stress-Dependent Remodeling on Arterial Geometry Under Hypertensive Conditions
,”
J. Biomech.
,
30
(
8
), pp.
819
827
.10.1016/S0021-9290(97)00032-8
25.
Melnik
,
T.
,
Jordan
,
O.
,
Corpataux
,
J. M.
,
Delie
,
F.
, and
Saucy
,
F.
,
2022
, “
Pharmacological Prevention of Intimal Hyperplasia: A State-of-the-Art Review
,”
Pharmacol. Ther.
,
235
, p.
108157
.10.1016/j.pharmthera.2022.108157
26.
Teichgräber
,
U.
,
Lehmann
,
T.
,
Aschenbach
,
R.
,
Scheinert
,
D.
,
Zeller
,
T.
,
Brechtel
,
K.
,
Blessing
,
E.
, et al.,
2020
, “
Drug-Coated Balloon Angioplasty of Femoropopliteal Lesions Maintained Superior Efficacy Over Conventional Balloon: 2-Year Results of the Randomized EffPac Trial
,”
Radiology
,
295
(
2
), pp.
478
487
.10.1148/radiol.2020191619
27.
Werk
,
M.
,
Albrecht
,
T.
,
Meyer
,
D. R.
,
Ahmed
,
M. N.
,
Behne
,
A.
,
Dietz
,
U.
,
Eschenbach
,
G.
, et al.,
2012
, “
Paclitaxel-Coated Balloons Reduce Restenosis After Femoro-Popliteal Angioplasty: Evidence From the Randomized PACIFIER Trial
,”
Circ.: Cardiovasc. Interventions
,
5
(
6
), pp.
831
840
.10.1161/CIRCINTERVENTIONS.112.971630
28.
Scheller
,
B.
,
Speck
,
U.
,
Abramjuk
,
C.
,
Bernhardt
,
U.
,
Böhm
,
M.
, and
Nickenig
,
G.
,
2004
, “
Paclitaxel Balloon Coating, a Novel Method for Prevention and Therapy of Restenosis
,”
Circulation
,
110
(
7
), pp.
810
814
.10.1161/01.CIR.0000138929.71660.E0
29.
Chowdhury
,
M. M.
,
Singh
,
K.
,
Albaghdadi
,
M. S.
,
Khraishah
,
H.
,
Mauskapf
,
A.
,
Kessinger
,
C. W.
,
Osborn
,
E. A.
, et al.,
2020
, “
Paclitaxel Drug-Coated Balloon Angioplasty Suppresses Progression and Inflammation of Experimental Atherosclerosis in Rabbits
,”
JACC Basic Transl. Sci.
,
5
(
7
), pp.
685
695
.10.1016/j.jacbts.2020.04.007
30.
Sun
,
G.
,
Liu
,
J.
,
Jia
,
S.
,
Zhang
,
J.
,
Zhuang
,
B.
,
Jia
,
X.
,
Fu
,
W.
,
Wu
,
D.
,
Wang
,
F.
,
Zhao
,
Y.
,
Guo
,
P.
,
Bi
,
W.
,
Wang
,
S.
, and
Guo
,
W.
,
2021
, “
Comparison of Drug-Coated Balloon Angioplasty Versus Uncoated Balloon Angioplasty in Treatment of Total Occlusions With Severe Femoropopliteal Lesions: An Additional Analysis From the AcoArt I Study
,”
Vascular
,
29
(
3
), pp.
340
349
.10.1177/1708538120953663
31.
Zil-E-Ali
,
A.
,
Ahmadzada
,
M.
,
Calisi
,
O.
,
Holcomb
,
R. M.
,
Patel
,
A.
, and
Aziz
,
F.
,
2023
, “
A Systematic Review and Meta-Analysis to Assess the Impact of Pre-Existing Comorbidities on the 30-Day Readmission After Lower Extremity Bypass Surgery for Peripheral Artery Occlusive Disease
,”
Ann. Vasc. Surg.
,
91
, pp.
10
19
.10.1016/j.avsg.2022.12.072
32.
Kumar
,
S.
,
Andueza
,
A.
, and
Jo
,
H.
,
2021
, “
Is Endothelial Dysfunction a Therapeutic Target for Peripheral Artery Disease?: PRDM16 Is Going Out on a Limb
,”
Circ. Res.
,
129
(
1
), pp.
78
80
.10.1161/CIRCRESAHA.121.319448
33.
Santillán-Cortez
,
D.
,
Vera-Gómez
,
E.
,
Hernández-Patricio
,
A.
,
Ruíz-Hernández
,
A. S.
,
Gutiérrez-Buendía
,
J. A.
,
De la VegaMoreno
,
K.
,
Rizo-García
,
Y. A.
, et al.,
2023
, “
Endothelial Progenitor Cells May Be Related to Major Amputation After Angioplasty in Patients With Critical Limb Ischemia
,”
Cells
,
12
(
4
), p.
584
.10.3390/cells12040584
34.
Qian
,
H.
,
Yang
,
Y.
,
Li
,
J.
,
Huang
,
J.
,
Dou
,
K.
, and
Yang
,
G.
,
2007
, “
The Role of Vascular Stem Cells in Atherogenesis and Post-Angioplasty Restenosis
,”
Ageing Res. Rev.
,
6
(
2
), pp.
109
127
.10.1016/j.arr.2007.01.001
35.
Tang
,
T. Y.
,
Yap
,
C. J.
,
Chan
,
S. L.
,
Soon
,
S. X.
,
Lee
,
C. T.
,
Chong
,
T. T.
, and
Leong
,
C. R.
,
2021
, “
Safety and Efficacy of Luminor™ Balloon and Angiolite™ Stent on TASC C/D Tibial Occlusive Lesions in CLI Patients: 12-Month Results. The MERLION Trial
,”
Int. Angiol.
,
40
(
4
), pp.
335
344
.10.23736/S0392-9590.21.04690-3
36.
Schiffrin
,
E. L.
,
2004
, “
Remodeling of Resistance Arteries in Essential Hypertension and Effects of Antihypertensive Treatment
,”
Am. J. Hypertens.
,
17
(
12
), pp.
1192
1200
.10.1016/j.amjhyper.2004.05.023
37.
Khavandi
,
K.
,
Greenstein
,
A. S.
,
Sonoyama
,
K.
,
Withers
,
S.
,
Price
,
A.
,
Malik
,
R. A.
, and
Heagerty
,
A. M.
,
2008
, “
Myogenic Tone and Small Artery Remodelling: Insight Into Diabetic Nephropathy
,”
Nephrol., Dial., Transplant.
,
24
(
2
), pp.
361
369
.10.1093/ndt/gfn583
38.
Heagerty
,
A. M.
,
Aalkjaer
,
C.
,
Bund
,
S. J.
,
Korsgaard
,
N.
, and
Mulvany
,
M. J.
,
1993
, “
Small Artery Structure in Hypertension. Dual Processes of Remodeling and Growth
,”
Hypertension
,
21
(
4
), pp.
391
397
.10.1161/01.HYP.21.4.391
39.
Castorena-Gonzalez
,
J. A.
,
Staiculescu
,
M. C.
,
Foote
,
C.
, and
Martinez-Lemus
,
L. A.
,
2014
, “
Mechanisms of the Inward Remodeling Process in Resistance Vessels: Is the Actin Cytoskeleton Involved?
,”
Microcirculation
,
21
(
3
), pp.
219
229
.10.1111/micc.12105
40.
Uskela
,
S.
,
Eranti
,
A.
,
Kärkkäinen
,
J. M.
, and
Rissanen
,
T. T.
,
2023
, “
Drug-Coated Balloon-Only Strategy for Percutaneous Coronary Intervention of de Novo Left Main Coronary Artery Disease: The Importance of Proper Lesion Preparation
,”
Front. Med.
,
17
(
1
), pp.
75
84
.10.1007/s11684-022-0950-1
41.
Rissanen
,
T. T.
,
Uskela
,
S.
,
Siljander
,
A.
,
Kärkkäinen
,
J. M.
,
Mäntylä
,
P.
,
Mustonen
,
J.
, and
Eränen
,
J.
,
2017
, “
Percutaneous Coronary Intervention of Complex Calcified Lesions With Drug-Coated Balloon After Rotational Atherectomy
,”
J. Interventional Cardiol.
,
30
(
2
), pp.
139
146
.10.1111/joic.12366
42.
Schillinger
,
M.
, and
Minar
,
E.
,
2005
, “
Restenosis After Percutaneous Angioplasty: The Role of Vascular Inflammation
,”
Vasc. Health Risk Manage.
,
1
(
1
), pp.
73
78
.10.2147/vhrm.1.1.73.58932
43.
Toutouzas
,
K.
,
Colombo
,
A.
, and
Stefanadis
,
C.
,
2004
, “
Inflammation and Restenosis After Percutaneous Coronary Interventions
,”
Eur. Heart J.
,
25
(
19
), pp.
1679
1687
.10.1016/j.ehj.2004.06.011
44.
Parmar
,
J. H.
,
Aslam
,
M.
, and
Standfield
,
N. J.
,
2009
, “
Percutaneous Transluminal Angioplasty of Lower Limb Arteries Causes a Systemic Inflammatory Response
,”
Ann. Vasc. Surg.
,
23
(
5
), pp.
569
576
.10.1016/j.avsg.2009.02.004
45.
Rachev
,
A.
,
2003
, “
Remodeling of Arteries in Response to Changes in Their Mechanical Environment
,”
Biomechanics of Soft Tissue in Cardiovascular Systems
,
G. A.
Holzapfel
and
R. W.
Ogden
, eds.,
Springer-Verlag
,
Wien, Austria
, pp.
221
271
.
46.
Prim
,
D. A.
,
Lane
,
B. A.
,
Ferruzzi
,
J.
,
Shazly
,
T.
, and
Eberth
,
J. F.
,
2021
, “
Evaluation of the Stress-Growth Hypothesis in Saphenous Vein Perfusion Culture
,”
Ann. Biomed. Eng.
,
49
(
1
), pp.
487
501
.10.1007/s10439-020-02582-1
47.
Prim
,
D. A.
,
Mohamed
,
M. A.
,
Lane
,
B. A.
,
Poblete
,
K.
,
Wierzbicki
,
M. A.
,
Lessner
,
S. M.
,
Shazly
,
T.
, and
Eberth
,
J. F.
,
2018
, “
Comparative Mechanics of Diverse Mammalian Carotid Arteries
,”
PLoS One
,
13
(
8
), p.
e0202123
.10.1371/journal.pone.0202123
48.
Prim
,
D. A.
,
Zhou
,
B.
,
Hartstone-Rose
,
A.
,
Uline
,
M. J.
,
Shazly
,
T.
, and
Eberth
,
J. F.
,
2016
, “
A Mechanical Argument for the Differential Performance of Coronary Artery Grafts
,”
J. Mech. Behav. Biomed. Mater.
,
54
, pp.
93
105
.10.1016/j.jmbbm.2015.09.017
49.
Zhou
,
B.
,
Alshareef
,
M.
,
Prim
,
D.
,
Collins
,
M.
,
Kempner
,
M.
,
Hartstone-Rose
,
A.
,
Eberth
,
J. F.
,
Rachev
,
A.
, and
Shazly
,
T.
,
2016
, “
The Perivascular Environment Along the Vertebral Artery Governs Segment-Specific Structural and Mechanical Properties
,”
Acta Biomater.
,
45
, pp.
286
295
.10.1016/j.actbio.2016.09.004
50.
Zhou
,
B.
,
Rachev
,
A.
, and
Shazly
,
T.
,
2015
, “
The Biaxial Active Mechanical Properties of the Porcine Primary Renal Artery
,”
J. Mech. Behav. Biomed. Mater.
,
48
, pp.
28
37
.10.1016/j.jmbbm.2015.04.004
51.
Wagner
,
H. P.
, and
Humphrey
,
J. D.
,
2011
, “
Differential Passive and Active Biaxial Mechanical Behaviors of Muscular and Elastic Arteries: Basilar Versus Common Carotid
,”
ASME J. Biomech. Eng.
,
133
(
5
), p.
051009
.10.1115/1.4003873
52.
Cox
,
R. H.
,
1981
, “
Basis for the Altered Arterial Wall Mechanics in the Spontaneously Hypertensive Rat
,”
Hypertension
,
3
(
4
), pp.
485
495
.10.1161/01.HYP.3.4.485
53.
Humphrey
,
J. D.
,
2001
,
Cardiovascular Solid Mechanics
,
Springer
,
New York
.
54.
Rachev
,
A.
, and
Hayashi
,
K.
,
1999
, “
Theoretical Study of the Effects of Vascular Smooth Muscle Contraction on Strain and Stress Distributions in Arteries
,”
Ann. Biomed. Eng.
,
27
(
4
), pp.
459
468
.10.1114/1.191
55.
Gleason
,
R. L.
, and
Humphrey
,
J. D.
,
2004
, “
A Mixture Model of Arterial Growth and Remodeling in Hypertension: Altered Muscle Tone and Tissue Turnover
,”
J. Vasc. Res.
,
41
(
4
), pp.
352
363
.10.1159/000080699
56.
Rachev
,
A.
,
Stergiopulos
,
N.
, and
Meister
,
J. J.
,
1996
, “
Theoretical Study of Dynamics of Arterial Wall Remodeling in Response to Changes in Blood Pressure
,”
J. Biomech.
,
29
(
5
), pp.
635
642
.10.1016/0021-9290(95)00108-5
57.
Hayashi
,
K.
, and
Shimizu
,
E.
,
2016
, “
Composition of Connective Tissues and Morphometry of Vascular Smooth Muscle in Arterial Wall of DOCA-Salt Hypertensive Rats—In Relation With Arterial Remodeling
,”
J. Biomech.
,
49
(
7
), pp.
1225
1229
.10.1016/j.jbiomech.2016.02.044
58.
Humphrey
,
J. D.
,
2008
, “
Mechanisms of Arterial Remodeling in Hypertension: Coupled Roles of Wall Shear and Intramural Stress
,”
Hypertension
,
52
(
2
), pp.
195
200
.10.1161/HYPERTENSIONAHA.107.103440
59.
Iyemere
,
V. P.
,
Proudfoot
,
D.
,
Weissberg
,
P. L.
, and
Shanahan
,
C. M.
,
2006
, “
Vascular Smooth Muscle Cell Phenotypic Plasticity and the Regulation of Vascular Calcification
,”
J. Intern. Med.
,
260
(
3
), pp.
192
210
.10.1111/j.1365-2796.2006.01692.x
60.
Martinez-Lemus
,
L. A.
,
Hill
,
M. A.
, and
Meininger
,
G. A.
,
2009
, “
The Plastic Nature of the Vascular Wall: A Continuum of Remodeling Events Contributing to Control of Arteriolar Diameter and Structure
,”
Physiology (Bethesda)
,
24
(
1
), pp.
45
57
.10.1152/physiol.00029.2008
61.
Bakker
,
E. N.
,
Buus
,
C. L.
,
Spaan
,
J. A.
,
Perree
,
J.
,
Ganga
,
A.
,
Rolf
,
T. M.
,
Sorop
,
O.
,
Bramsen
,
L. H.
,
Mulvany
,
M. J.
, and
Vanbavel
,
E.
,
2005
, “
Small Artery Remodeling Depends on Tissue-Type Transglutaminase
,”
Circ. Res.
,
96
(
1
), pp.
119
126
.10.1161/01.RES.0000151333.56089.66
62.
Gerthoffer
,
W. T.
,
2007
, “
Mechanisms of Vascular Smooth Muscle Cell Migration
,”
Circ. Res.
,
100
(
5
), pp.
607
621
.10.1161/01.RES.0000258492.96097.47
63.
Alexander
,
M. R.
, and
Owens
,
G. K.
,
2012
, “
Epigenetic Control of Smooth Muscle Cell Differentiation and Phenotypic Switching in Vascular Development and Disease
,”
Annu. Rev. Physiol.
,
74
(
1
), pp.
13
40
.10.1146/annurev-physiol-012110-142315
64.
Feng
,
Y.
,
Wang
,
X.
,
Zhao
,
Y.
,
Li
,
L.
,
Niu
,
P.
,
Huang
,
Y.
,
Han
,
Y.
,
Tan
,
W.
, and
Huo
,
Y.
,
2021
, “
A Comparison of Passive and Active Wall Mechanics Between Elastic and Muscular Arteries of Juvenile and Adult Rats
,”
J. Biomech.
,
126
, p.
110642
.10.1016/j.jbiomech.2021.110642
65.
Kostelnik
,
C. J.
,
Gale
,
M. K.
,
Crouse
,
K. J.
,
Shazly
,
T.
, and
Eberth
,
J. F.
,
2023
, “
Acute Mechanical Consequences of Vessel-Specific Coronary Bypass Combinations
,”
Cardiovasc. Eng. Technol.
, 14(3), pp. 404–418.10.1007/s13239-023-00661-7
66.
Hayashi
,
K.
, and
Naiki
,
T.
,
2009
, “
Adaptation and Remodeling of Vascular Wall; Biomechanical Response to Hypertension
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
1
), pp.
3
19
.10.1016/j.jmbbm.2008.05.002
67.
Canham
,
P. B.
, and
Mullin
,
K.
,
1978
, “
Orientation of Medial Smooth Muscle in the Wall of Systemic Muscular Arteries
,”
J. Microsc.
,
114
(
3
), pp.
307
318
.10.1111/j.1365-2818.1978.tb00140.x
You do not currently have access to this content.