Abstract

Multiple biomechanical shoulder simulators have been described in the literature, with a trend toward increasing complexity to better simulate clinical scenarios. Our objective was to develop an advanced, novel shoulder joint simulator and compare outcomes at two separate institutions, for a typical shoulder joint motion simulation. Identical shoulder simulators were developed & deployed at both institutions. Eight cadaveric upper extremities were tested by simulating actively controlled, arm elevation in the plane of the scapula for two sequential test conditions (intact and nondestructive simulated cuff-tear), each repeated for a total of five trials. Muscle forces and joint translations were recorded for both conditions. The intact condition was repeated following simulated cuff-tear to assess effect of testing order. Statistical analyses were aimed at assessing repeatability and reproducibility of results within specimens, between specimens, and between institutions. The highest average forces were observed for the middle deltoid (233N or 32.5% body weight (BW)), followed by infraspinatus (99.0N), and posterior deltoid (93.7N) muscles. Differentiation between test conditions was unhindered by variability between repeated trials. Data from testing repeated over time, and between the two institutions were not significantly different. The novel shoulder simulator produced repeatable results with low trial-to-trial variation and outcomes were comparable between the two institutions. The results demonstrated a consistent response in muscle forces and humeral translation for the simulated rotator cuff tear condition. Such advanced shoulder simulators could thus be used for evaluating and optimizing surgical interventions and implant strategies.

References

1.
Tashjian
,
R. Z.
,
Levanthal
,
E.
,
Spenciner
,
D. B.
,
Green
,
A.
, and
Fleming
,
B. C.
,
2007
, “
Initial Fixation Strength of Massive Rotator Cuff Tears: In Vitro Comparison of Single-Row Suture Anchor and Transosseous Tunnel Constructs
,”
Arthrosc. – J. Arthrosc. Relat. Surg.
,
23
(
7
), pp.
710
716
.10.1016/j.arthro.2007.01.027
2.
Schneider
,
D. J.
, and
Lee
,
T. Q.
,
2002
, “
The Biomechanics of Total Shoulder Arthroplasty
,”
Oper. Tech. Orthop.
,
12
(
1
), pp.
2
9
.10.1053/otor.2002.34439
3.
Dyrna
,
F.
,
Kumar
,
N. S.
,
Obopilwe
,
E.
,
Scheiderer
,
B.
,
Comer
,
B.
,
Nowak
,
M.
,
Romeo
,
A. A.
,
Mazzocca
,
A. D.
, and
Beitzel
,
K.
,.
2018
, “
Relationship Between Deltoid and Rotator Cuff Muscles During Dynamic Shoulder Abduction: A Biomechanical Study of Rotator Cuff Tear Progression
,”
Am. J. Sports Med.
,
46
(
8
), pp.
1919
1926
.10.1177/0363546518768276
4.
Henninger
,
H. B.
,
Barg
,
A.
,
Anderson
,
A. E.
,
Bachus
,
K. N.
,
Tashjian
,
R. Z.
, and
Burks
,
R. T.
,
2012
, “
Effect of Deltoid Tension and Humeral Version in Reverse Total Shoulder Arthroplasty: A Biomechanical Study
,”
J. Shoulder Elb. Surg.
,
21
(
4
), pp.
483
490
.10.1016/j.jse.2011.01.040
5.
North
,
L. R.
,
Hetzler
,
M. A.
,
Pickell
,
M.
,
Bryant
,
J. T.
,
Deluzio
,
K. J.
, and
Bicknell
,
R. T.
,
2015
, “
Effect of Implant Geometry on Range of Motion in Reverse Shoulder Arthroplasty Assessed Using Glenohumeral Separation Distance
,”
J. Shoulder Elb. Surg.
,
24
(
9
), pp.
1359
1366
.10.1016/j.jse.2014.12.031
6.
Wuelker
,
N.
,
Korell
,
M.
, and
Thren
,
K.
,
1998
, “
Dynamic Gleohumeral Joint Stability
,”
J. Shoulder Elb. Surg.
, 7(1), pp. 43–52.10.1016/s1058-2746(98)90182-3
7.
Baumgartner
,
D.
,
Tomas
,
D.
,
Gossweiler
,
L.
,
Siegl
,
W.
,
Osterhoff
,
G.
, and
Heinlein
,
B.
,
2014
, “
Towards the Development of a Novel Experimental Shoulder Simulator With Rotating Scapula and Individually Controlled Muscle Forces Simulating the Rotator Cuff
,”
Med. Biol. Eng. Comput.
,
52
(
3
), pp.
293
299
.10.1007/s11517-013-1120-z
8.
Bouaicha
,
S.
,
Kuster
,
R. P.
,
Schmid
,
B.
,
Baumgartner
,
D.
,
Zumstein
,
M.
, and
Moor
,
B. K.
,
2020
, “
Biomechanical Analysis of the Humeral Head Coverage, Glenoid Inclination and Acromio-Glenoidal Height as Isolated Components of the Critical Shoulder Angle in a Dynamic Cadaveric Shoulder Model
,”
Clin. Biomech.
,
72
(
December 2019
), pp.
115
121
.10.1016/j.clinbiomech.2019.12.003
9.
Giles
,
J.
W.,
Ferreira
,
L. M.
,
Athwal
,
G. S.
, and
Johnson
,
J. A.
,
2014
, “
Development and Performance Evaluation of a Multi-PID Muscle Loading Driven In Vitro Active-Motion Shoulder Simulator and Application to Assessing Reverse Total Shoulder Arthroplasty
,”
ASME J. Biomech. Eng.
,
136
(
12
), p. 121007.10.1115/1.4028820
10.
Hansen
,
M. L.
,
Otis
,
J. C.
,
Johnson
,
J. S.
,
Cordasco
,
F. A.
,
Craig
,
E. V.
, and
Warren
,
R. F.
,
2008
, “
Biomechanics of Massive Rotator Cuff Tears: Implications for Treatment
,”
J. Bone Jt. Surg.-Am.
,
90
(
2
), pp.
316
325
.10.2106/JBJS.F.00880
11.
Onstot
,
B. R.
,
Jacofsky
,
M. C.
, and
Hansen
,
M. L.
,
2013
, “
Muscle Force and Excursion Requirements and Moment Arm Analysis of a Posterior-Superior Offset Reverse Total Shoulder Prosthesis
,”
Bull. Hosp. Jt. Dis.
, 71(Suppl. 2), pp. S25–S30.https://pubmed.ncbi.nlm.nih.gov/24328576/
12.
Scalise
,
J.
,
Jaczynski
,
A.
, and
Jacofsky
,
M.
,
2016
, “
The Effect of Glenosphere Diameter and Eccentricity on Deltoid Power in Reverse Shoulder Arthroplasty
,”
Bone Jt. J.
,
98-B
(
2
), pp.
218
223
.10.1302/0301-620X.98B2.35912
13.
Krämer
,
M.
,
Bäunker
,
A.
,
Wellmann
,
M.
,
Hurschler
,
C.
, and
Smith
,
T.
,
2016
, “
Implant Impingement During Internal Rotation After Reverse Shoulder Arthroplasty. the Effect of Implant Configuration and Scapula Anatomy: A Biomechanical Study
,”
Clin. Biomech.
,
33
, pp.
111
116
.10.1016/j.clinbiomech.2016.02.015
14.
Oh
,
J. H.
,
Jun
,
B. J.
,
McGarry
,
M. H.
, and
Lee
,
T. Q.
,
2011
, “
Does a Critical Rotator Cuff Tear Stage Exist?
,”
J. Bone Jt. Surg.-Am.
,
93
(
22
), pp.
2100
2109
.10.2106/JBJS.J.00032
15.
Wu
,
G.
,
van der Helm
,
F. C. T.
,
(DirkJan) Veeger
,
H. E. J.
,
Makhsous
,
M.
,
Van Roy
,
P.
,
Anglin
,
C.
,
Nagels
,
J.
,
Karduna
,
A. R.
,
McQuade
,
K.
,
Wang
,
X.
,
Werner
,
F. W.
, and
Buchholz
,
B.
,.
2005
, “
ISB Recommendation on Definitions of Joint Coordinate Systems of Various Joints for the Reporting of Human Joint motion - Part II: Shoulder, Elbow, Wrist and Hand
,”
J. Biomech.
,
38
(
5
), pp.
981
992
.10.1016/j.jbiomech.2004.05.042
16.
Dempster
,
W. T.
,
1955
,
Space Requirements Seated Operator,
Wright-Patterson Air Force Base, OH, Wright Air Development Center (WADC) Technical Report Pgs. 55–159 (OCoLC) 644886966.
17.
Kibler
,
B. W.
,
Sciascia
,
A.
, and
Wilkes
,
T.
,
2012
, “
Scapular Dyskinesis and Its Relation to Shoulder Injury
,”
J. Am. Acad. Orthop. Surg.
,
20
(
6
), pp.
364
372
.10.5435/JAAOS-20-06-364
18.
Ludewig
,
P. M.
,
Phadke
,
V.
,
Braman
,
J. P.
,
Hassett
,
D. R.
,
Cieminski
,
C. J.
, and
Laprade
,
R. F.
,
2009
, “
Motion of the Shoulder Complex During Multiplanar Humeral Elevation
,”
J. Bone. Jt. Surg – Ser. A
,
91
(
2
), pp.
378
389
.10.2106/JBJS.G.01483
19.
Lädermann
,
A.
,
Burkhart
,
S. S.
,
Hoffmeyer
,
P.
,
Neyton
,
L.
,
Collin
,
P.
,
Yates
,
E.
, and
Denard
,
P. J.
,
2016
, “
Classification of Full-Thickness Rotator Cuff Lesions: A Review
,”
EFORT Open Rev.
,
1
(
12
), pp.
420
430
.10.1302/2058-5241.1.160005
20.
Brandt
,
M.
,
Andersen
,
L. L.
,
Samani
,
A.
,
Jakobsen
,
M. D.
, and
Madeleine
,
P.
,
2017
, “
Inter-Day Reliability of Surface Electromyography Recordings of the Lumbar Part of Erector Spinae Longissimus and Trapezius Descendens During Box Lifting
,”
BMC Musculoskelet. Disord.
, 18(1), p. 519.10.1186/s12891-017-1872-y
21.
Li
,
L.
,
Zeng
,
L.
,
Lin
,
Z.-J.
,
Cazzell
,
M.
, and
Liu
,
H.
,
2015
, “
Tutorial on Use of Intraclass Correlation Coefficients for Assessing Intertest Reliability and Its Application in Functional Near-Infrared Spectroscopy–Based Brain Imaging
,”
J. Biomed. Opt.
,
20
(
5
), p.
050801
.10.1117/1.JBO.20.5.050801
22.
Aluisio
,
F. V.
,
Osbahr
,
D. C.
, and
Speer
,
K. P.
,
2003
, “
Analysis of Rotator Cuff Muscles in Adult Human Cadaveric Specimens
,”
Am. J. Orthop. (Belle Mead NJ)
, 32(3), pp.
124
129
.https://pubmed.ncbi.nlm.nih.gov/12647876/
23.
Ward
,
S. R.
,
Hentzen
,
E. R.
,
Smallwood
,
L. H.
, Eastlack, R. K., Burns, K. A., Fithian, D. C., Friden, J., and Lieber, R. L.,
2006
, “
Rotator Cuff Muscle Architecture: Implications for Glenohumeral Stability
,”
Clin. Orthop. Relat. Res.
, 448, pp. 157–163.10.1097/01.blo.0000194680.94882.d3
24.
Bogduk
,
N.
,
Johnson
,
G.
, and
Spalding
,
D.
,
1998
, “
The Morphology and Biomechanics of Latissimus Dorsi
,”
Clin. Biomech. (Bristol, Avon)
, 13(6), pp.
377
385
.10.1016/s0268-0033(98)00102-8
25.
Raz
,
Y.
,
Henseler
,
J. F.
,
Kolk
,
A.
, Riaz, M., van der Zwaal, P., Nagles, J., Nelissen, R. G. H. H., and Raz, V.,
2015
, “
Patterns of Age-Associated Degeneration Differ in Shoulder Muscles
,”
Front. Aging Neurosci.
, 7, p.
236
.10.3389/fnagi.2015.00236
26.
Henninger
,
H. B.
,
Christensen
,
G. V.
,
Taylor
,
C. E.
,
Kawakami
,
J.
,
Hillyard
,
B. S.
,
Tashjian
,
R. Z.
, and
Chalmers
,
P. N.
,
2020
, “
The Muscle Cross-Sectional Area on MRI of the Shoulder Can Predict Muscle Volume: An MRI Study in Cadavers
,”
Clin. Orthop, Relat. Res.
,
478
(
4
), pp.
871
883
.10.1097/CORR.0000000000001044
27.
Holzbaur
,
K. R. S.
,
Murray
,
W. M.
,
Gold
,
G. E.
, and
Delp
,
S. L.
,
2007
, “
Upper Limb Muscle Volumes in Adult Subjects
,”
J. Biomech.
, 40(4), pp.
742
749
.10.1016/j.jbiomech.2006.11.011
28.
Bouaicha
,
S.
,
Slankamenac
,
K.
,
Moor
,
B. K.
,
Tok
,
S.
,
Andreisek
,
G.
, and
Finkenstaedt
,
T.
,
2016
, “
Cross-Sectional Area of the Rotator Cuff Muscles in MRI - Is There Evidence for a Biomechanical Balanced Shoulder?
,”
PLoS One
,
11
(
6
), p.
e0157946
.10.1371/journal.pone.0157946
29.
Oizumi
,
N.
,
Tadano
,
S.
,
Narita
,
Y.
,
Suenaga
,
N.
,
Iwasaki
,
N.
, and
Minami
,
A.
,
2006
, “
Numerical Analysis of Cooperative Abduction Muscle Forces in a Human Shoulder Joint
,”
J. Shoulder Elb. Surg.
,
15
(
3
), pp.
331
338
.10.1016/j.jse.2005.08.012
30.
Kim
,
Y. S.
,
Kim
,
E. Y.
,
Kang
,
S. M.
,
Ahn
,
H. K.
, and
Kim
,
H. S.
,
2017
, “
Single Cross-Sectional Area of Pectoralis Muscle by Computed Tomography – Correlation With Bioelectrical Impedance Based Skeletal Muscle Mass in Healthy Subjects
,”
Clin. Physiol. Funct. Imaging
,
37
(
5
), pp.
507
511
.10.1111/cpf.12333
31.
Lieber
,
R. L.
, and
Ward
,
S. R.
,
2011
, “
Skeletal Muscle Design to Meet Functional Demands
,”
Philos. Trans. R. Soc. Lond. B Biol. Sci.
, 366(1570), pp.
1466
1476
.10.1098/rstb.2010.0316
32.
Oatis
,
C.
,
2009
,
Kinesiology: The Mechanics & Pathomechanics of Human Movement
, 2nd ed.,
Lippincott Williams & Wilkens
, Philadelphia, PA.
33.
Hoppeler
,
H.
,
2014
, “
Eccentric Exercise
,”
Physiology and Application in Sport and Rehabilitation
, 1st ed.,
Routledge
, London, UK.
You do not currently have access to this content.