Abstract

Mixture theory models continua consisting of multiple constituents with independent motions. In constrained mixtures, all constituents share the same velocity but they may have different reference configurations. The theory of constrained reactive mixtures was formulated to analyze growth and remodeling in living biological tissues. It can also reproduce and extend classical frameworks of damage mechanics and viscoelasticity under isothermal conditions, when modeling bonds that can break and reform. This study focuses on establishing the thermodynamic foundations of constrained reactive mixtures under more general conditions, for arbitrary reactive processes where temperature varies in time and space. By incorporating general expressions for reaction kinetics, it is shown that the residual dissipation statement of the Clausius–Duhem inequality must include a reactive power density, while the axiom of energy balance must include a reactive heat supply density. Both of these functions are proportional to the molar production rate of a reaction, and they depend on the chemical potentials of the mixture constituents. We present novel formulas for the classical thermodynamic concepts of energy of formation and heat of reaction, making it possible to evaluate the heat supply generated by reactive processes from the knowledge of the specific free energy of mixture constituents as well as the reaction rate. We illustrate these novel concepts with mixtures of ideal gases, and isothermal reactive damage mechanics and viscoelasticity, as well as reactive thermoelasticity. This framework facilitates the analysis of reactive tissue biomechanics and physiological and biomedical engineering processes where temperature variations cannot be neglected.

References

1.
Truesdell
,
C.
,
1957
, “
Sulle basi della termomeccanica
,”
Rend. Accad. Lincei
,
22
(
8
), pp.
33
38
.
2.
Kelly
,
P. D.
,
1964
, “
A Reacting Continuum
,”
Int. J. Eng. Sci.
,
2
(
2
), pp.
129
153
.10.1016/0020-7225(64)90001-1
3.
Eringen
,
A. C.
, and
Ingram
,
J. D.
,
1965
, “
A Continuum Theory of Chemically Reacting Media—I
,”
Int. J. Eng. Sci.
,
3
(
2
), pp.
197
212
.10.1016/0020-7225(65)90044-3
4.
Bowen
,
R. M.
,
1968
, “
Thermochemistry of Reacting Materials
,”
J. Chem. Phys.
,
49
(
4
), pp.
1625
1637
.10.1063/1.1670288
5.
Nunziato
,
J. W.
, and
Walsh
,
E. K.
,
1980
, “
On Ideal Multiphase Mixtures With Chemical Reactions and Diffusion
,”
Arch. Ration. Mech. Anal.
,
73
(
4
), pp.
285
311
.10.1007/BF00247672
6.
Bedford
,
A.
, and
Drumheller
,
D. S.
,
1983
, “
Theories of Immiscible and Structured Mixtures
,”
Int. J. Eng. Sci.
,
21
(
8
), pp.
863
960
.10.1016/0020-7225(83)90071-X
7.
Ateshian
,
G. A.
,
2007
, “
On the Theory of Reactive Mixtures for Modeling Biological Growth
,”
Biomech. Model. Mechanobiol.
,
6
(
6
), pp.
423
445
.10.1007/s10237-006-0070-x
8.
Kenyon
,
D. E.
,
1979
, “
A Mathematical Model of Water Flux Through Aortic Tissue
,”
Bull. Math. Biol.
,
41
(
1
), pp.
79
90
.10.1016/S0092-8240(79)80055-5
9.
Mow
,
V.
,
Kuei
,
S.
,
Lai
,
W.
, and
Armstrong
,
C.
,
1980
, “
Biphasic Creep and Stress Relaxation of Articular Cartilage in Compression: Theory and Experiments
,”
ASME J. Biomech. Eng.
,
102
(
1
), pp.
73
84
.10.1115/1.3138202
10.
Oomens
,
C. W.
,
van Campen
,
D. H.
, and
Grootenboer
,
H. J.
,
1987
, “
A Mixture Approach to the Mechanics of Skin
,”
J. Biomech.
,
20
(
9
), pp.
877
885
.10.1016/0021-9290(87)90147-3
11.
Lai
,
W.
,
Hou
,
J.
, and
Mow
,
V.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.10.1115/1.2894880
12.
Huyghe
,
J. M.
, and
Janssen
,
J.
,
1997
, “
Quadriphasic Mechanics of Swelling Incompressible Porous Media
,”
Int. J. Eng. Sci.
,
35
(
8
), pp.
793
802
.10.1016/S0020-7225(96)00119-X
13.
Gu
,
W.
,
Lai
,
W.
, and
Mow
,
V.
,
1998
, “
A Mixture Theory for Charged-Hydrated Soft Tissues Containing Multi-Electrolytes: Passive Transport and Swelling Behaviors
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
169
180
.10.1115/1.2798299
14.
Mauck
,
R. L.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2003
, “
Modeling of Neutral Solute Transport in a Dynamically Loaded Porous Permeable Gel: Implications for Articular Cartilage Biosynthesis and Tissue Engineering
,”
ASME J. Biomech. Eng.
,
125
(
5
), pp.
602
614
.10.1115/1.1611512
15.
Ateshian
,
G. A.
,
Likhitpanichkul
,
M.
, and
Hung
,
C. T.
,
2006
, “
A Mixture Theory Analysis for Passive Transport in Osmotic Loading of Cells
,”
J. Biomech.
,
39
(
3
), pp.
464
475
.10.1016/j.jbiomech.2004.12.013
16.
Ateshian
,
G. A.
,
Costa
,
K. D.
,
Azeloglu
,
E. U.
,
Morrison
,
B.
, and
Hung
,
C. T.
,
2009
, “
Continuum Modeling of Biological Tissue Growth by Cell Division, and Alteration of Intracellular Osmolytes and Extracellular Fixed Charge Density
,”
ASME J. Biomech. Eng.
,
131
(
10
), p.
101001
.10.1115/1.3192138
17.
Ateshian
,
G. A.
,
Morrison
,
B.
, III
,
Holmes
,
J. W.
, and
Hung
,
C. T.
,
2012
, “
Mechanics of Cell Growth
,”
Mech. Res. Commun.
,
42
, pp.
118
125
.10.1016/j.mechrescom.2012.01.010
18.
Humphrey
,
J.
, and
Rajagopal
,
K.
,
2002
, “
A Constrained Mixture Model for Growth and Remodeling of Soft Tissues
,”
Math. Models Methods Appl. Sci.
,
12
(
03
), pp.
407
430
.10.1142/S0218202502001714
19.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
,
1994
, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
(
4
), pp.
455
467
.10.1016/0021-9290(94)90021-3
20.
Baek
,
S.
,
Rajagopal
,
K. R.
, and
Humphrey
,
J. D.
,
2006
, “
A Theoretical Model of Enlarging Intracranial Fusiform Aneurysms
,”
ASME J. Biomech. Eng.
,
128
(
1
), pp.
142
149
.10.1115/1.2132374
21.
Wineman
,
A.
, and
Rajagopal
,
K.
,
1990
, “
On a Constitutive Theory for Materials Undergoing Microstructural Changes
,”
Arch. Mech.
,
42
(
1
), pp.
53
75
.https://www.semanticscholar.org/paper/On-a-constitutive-theory-for-materials-undergoing-Wineman-Rajagopal/346d45859f49bf7bc53e167323701f0feff83ad4
22.
Ateshian
,
G. A.
, and
Ricken
,
T.
,
2010
, “
Multigenerational Interstitial Growth of Biological Tissues
,”
Biomech. Model. Mechanobiol.
,
9
(
6
), pp.
689
702
.10.1007/s10237-010-0205-y
23.
Rajagopal
,
K.
, and
Srinivasa
,
A.
,
1998
, “
Mechanics of the Inelastic Behavior of Materials—Part 1, Theoretical Underpinnings
,”
Int. J. Plast.
,
14
(
10–11
), pp.
945
967
.10.1016/S0749-6419(98)00037-0
24.
Rajagopal
,
K.
, and
Srinivasa
,
A.
,
1998
, “
Mechanics of the Inelastic Behavior of Materials. Part II: Inelastic Response
,”
Int. J. Plast.
,
14
(
10–11
), pp.
969
995
.10.1016/S0749-6419(98)00041-2
25.
Mollica
,
F.
,
Rajagopal
,
K.
, and
Srinivasa
,
A.
,
2001
, “
The Inelastic Behavior of Metals Subject to Loading Reversal
,”
Int. J. Plast.
,
17
(
8
), pp.
1119
1146
.10.1016/S0749-6419(00)00082-6
26.
Rajagopal
,
K.
, and
Srinivasa
,
A.
,
2015
, “
Inelastic Response of Solids Described by Implicit Constitutive Relations With Nonlinear Small Strain Elastic Response
,”
Int. J. Plast.
,
71
, pp.
1
9
.10.1016/j.ijplas.2015.02.007
27.
Rajagopal
,
K.
, and
Srinivasa
,
A.
,
2016
, “
An Implicit Three-Dimensional Model for Describing the Inelastic Response of Solids Undergoing Finite Deformation
,”
Z. Angew. Math. Phys.
,
67
(
4
), pp.
1
14
.10.1007/s00033-016-0671-x
28.
Rajagopal
,
K. R.
, and
Srinivasa
,
A. R.
,
2004
, “
On the Thermomechanics of Materials That Have Multiple Natural Configurations Part I: Viscoelasticity and Classical Plasticity
,”
Z. Angew. Math. Phys. ZAMP
,
55
(
5
), pp.
861
893
.10.1007/s00033-004-4019-6
29.
Ateshian
,
G. A.
,
2015
, “
Viscoelasticity Using Reactive Constrained Solid Mixtures
,”
J. Biomech.
,
48
(
6
), pp.
941
947
.10.1016/j.jbiomech.2015.02.019
30.
Nims
,
R. J.
,
Durney
,
K. M.
,
Cigan
,
A. D.
,
Dusséaux
,
A.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2016
, “
Continuum Theory of Fibrous Tissue Damage Mechanics Using Bond Kinetics: Application to Cartilage Tissue Engineering
,”
Interface Focus
,
6
(
1
), p.
20150063
.10.1098/rsfs.2015.0063
31.
Nims
,
R. J.
, and
Ateshian
,
G. A.
,
2017
, “
Reactive Constrained Mixtures for Modeling the Solid Matrix of Biological Tissues
,”
J. Elasticity
,
129
(
1–2
), pp.
69
105
.10.1007/s10659-017-9630-9
32.
Zimmerman
,
B. K.
,
Jiang
,
D.
,
Weiss
,
J. A.
,
Timmins
,
L. H.
, and
Ateshian
,
G. A.
,
2021
, “
On the Use of Constrained Reactive Mixtures of Solids to Model Finite Deformation Isothermal Elastoplasticity and Elastoplastic Damage Mechanics
,”
J. Mech. Phys. Solids
,
155
, p.
104534
.10.1016/j.jmps.2021.104534
33.
Prud'homme
,
R.
,
2010
,
Flows of Reactive Fluids
(Fluid Mechanics and Its Applications, Vol.
94
),
Springer
,
New York
.
34.
Liu
,
I.-S.
, and
Müller
,
I.
,
1984
, “
Thermodynamics of Mixtures of Fluids
,”
Rational Thermodynamics
,
Springer
, Berlin, pp.
264
285
.
35.
Passman
,
S. L.
,
Nunziato
,
J. W.
, and
Walsh
,
E. K.
,
1984
, “
A Theory of Multiphase Mixtures
,”
Rational Thermodynamics
,
Springer
, Berlin, pp.
286
325
.
36.
Kannan
,
K.
, and
Rajagopal
,
K.
,
2011
, “
A Thermodynamical Framework for Chemically Reacting Systems
,”
Z. Angew. Math. Phys.
,
62
(
2
), pp.
331
363
.10.1007/s00033-010-0104-1
37.
Pullela
,
M.
, and
Ravindran
,
P.
,
2014
, “
Aging in Soft Tissues: Influence of Chemical Reactions on Mechanical Response
,”
ASME
Paper No. IMECE2014-37801.10.1115/IMECE2014-37801
38.
Mythravaruni
,
P.
, and
Ravindran
,
P.
,
2019
, “
The Effect of Oxidation on the Mechanical Response of Isolated Elastin and Aorta
,”
ASME J. Biomech. Eng.
,
141
(
6
), p.
061002
.10.1115/1.4043355
39.
Truesdell
,
C.
, and
Toupin
,
R.
,
1960
, “
The Classical Field Theories
,”
Encyclopedia of Physics
, Vol.
III/1
,
Springer-Verlag
,
Berlin
.
40.
Coleman
,
B. D.
, and
Noll
,
W.
,
1963
, “
The Thermodynamics of Elastic Materials With Heat Conduction and Viscosity
,”
Arch. Ration. Mech. Anal.
,
13
(
1
), pp.
167
178
.10.1007/BF01262690
41.
Atkins
,
P. W.
,
1978
,
Physical Chemistry
,
W. H. Freeman
,
San Francisco, CA
.
42.
Müller
,
I.
,
2007
,
A History of Thermodynamics: The Doctrine of Energy and Entropy
,
Springer
,
Berlin
.
43.
Truesdell
,
C.
,
1984
,
Rational Thermodynamics
, 2nd ed.,
Springer-Verlag
,
New York
.
44.
Bonet
,
J.
, and
Wood
,
R. D.
,
1997
,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.