Abstract

This study investigates the hypothesis that by surgically manipulating the outflow graft (OG) implantation during ventricle assist device placement, it may be possible to reduce the risk of cerebral embolism. We investigate this hypothesis using a computational approach on a patient-specific basis under fully pulsatile hemodynamics with a multiscale computational fluid dynamics model incorporating a coupled Eulerian-Lagrangian scheme that effectively tracks emboli in the fluid domain. Blood is modeled as a non-Newtonian fluid based on the hematocrit level. Preliminary flow analysis shows that depending on the anastomosis angle the left ventricular assist device (LVAD) can enhance the flow to the cerebral circulation by nearly 31%. Z-test results suggest that unsteady-flow modeling ought to be an integral part of any cardiovascular simulation with residual ventricular function. Assuming unsteady-flow conditions, a shallow LVAD outflow graft anastomosis angle is the most optimal if thrombi are released from the aortic-root reducing cerebral embolization incidence to 15.5% and from the ventricle to 17%, while a more pronounced anastomosis angle becomes advantageous when particles originate from the LVAD with an embolization rate of 16.9%. Overall, computations suggest that a pronounced LVAD anastomosis angle is the better implementation. Unsteady modeling is shown to be necessary for the presence of significant antegrade aortic-root flow which induces cyclical flow patterns due to residual pulsatility. On the other hand, depending on thrombus origin and ventricular assist devices (VAD) anastomosis angle there is a strong tradeoff in embolization rates.

References

1.
National Clinical Guideline Centre,
2018
, “
Chronic Heart Failure: National Clinical Guideline for Diagnosis and Management in Primary and Secondary Care
,” National Clinical Guideline Centre, London, UK.https://www.ncbi.nlm.nih.gov/pubmed/22741186
2.
Harvey
,
L.
,
Holley
,
C.
,
Roy
,
S.
,
Eckman
,
P.
,
Cogswell
,
R.
,
Liao
,
K.
, and
John
,
R.
,
2015
, “
Stroke After Left Ventricular Assist Device Implantation: Outcomes in the Continuous-Flow Era
,”
Ann. Thorac. Surg.
,
100
(
2
), pp.
535
541
.10.1016/j.athoracsur.2015.02.094
3.
Schmid
,
C.
,
Weyand
,
M.
,
Nabavi
,
D.
,
Hammel
,
D.
,
Deng
,
M.
,
Ringelstein
,
E.
, and
Scheld
,
H.
,
1998
, “
Cerebral and Systemic Embolization During Left Ventricular Support With the Novacor N100 Device
,”
Ann. Thorac. Surg.
,
65
(
6
), pp.
1703
1710
.10.1016/S0003-4975(98)00299-9
4.
Thoennissen
,
N.
,
Allroggen
,
A.
,
Ritter
,
M.
,
Dittrich
,
R.
,
Schmid
,
C.
,
Schmid
,
H.
,
Ringelstein
,
E.
, and
Nabavi
,
D.
,
2006
, “
Influence of Inflammation and Pump Dynamic on Cerebral Microembolization in Patients With Continuous-Flow DeBakey LVAD
,”
ASAIO J.
,
52
(
3
), pp.
243
247
.10.1097/01.mat.0000214682.95834.de
5.
Slater
,
J.
,
Rose
,
E.
,
Levin
,
H.
,
Frazier
,
O.
,
Roberts
,
J.
,
Weinberg
,
A.
, and
Oz
,
M.
,
1996
, “
Low Thromboembolic Risk Without Anticoagulation Using Advanced-Design Left Ventricular Assist Devices
,”
Ann. Thorac. Surg.
,
62
(
5
), pp.
1321
1328
.10.1016/0003-4975(96)00750-3
6.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R.
, and
Dewanjee
,
M.
,
1996
, “
Steady Flow in an Aneurysm Model: Correlation Between Fluid Dynamics and Blood Platelet Deposition
,”
ASME J. Biomech. Eng.
,
118
(
3
), pp.
280
286
.10.1115/1.2796008
7.
Nobili
,
M.
,
Sheriff
,
J.
,
Morbiducci
,
U.
,
Redaelli
,
A.
, and
Bluestein
,
D.
,
2008
, “
Platelet Activation Due to Hemodynamic Shear Stresses: Damage Accumulation Model and Comparison to In Vitro Measurements
,”
ASAIO J.
,
54
(
1
), pp.
64
72
.10.1097/MAT.0b013e31815d6898
8.
Karmonik
,
C.
,
Partovi
,
S.
,
Loebe
,
M.
,
Schmack
,
B.
,
Ghodsizad
,
A.
,
Robbin
,
M.
,
Noon
,
G.
,
Kallenbach
,
K.
,
Karck
,
M.
,
Davies
,
M.
,
Lumsden
,
A.
, and
Ruhparwar
,
A.
,
2012
, “
Influence of LVAD Cannula Outflow Tract Location on Hemodynamics in the Ascending Aorta
,”
ASAIO J.
,
58
(
6
), pp.
562
567
.10.1097/MAT.0b013e31826d6232
9.
Meuris
,
B.
,
Arnout
,
J.
,
Vlasselaers
,
D.
,
Schetz
,
M.
, and
Meyns
,
B.
,
2007
, “
Long-Term Management of an Implantable Left Ventricular Assist Device Using Low Molecular Weight Heparin and Antiplatelet Therapy: A Possible Alternative to Oral Anticoagulants
,”
Artif. Organs
,
31
(
5
), pp.
402
405
.10.1111/j.1525-1594.2007.00399.x
10.
Tsukui
,
H.
,
Abla
,
A.
,
Teuteberg
,
J.
,
McNamara
,
D.
,
Mathier
,
M.
,
Cadaret
,
L.
, and
Kormos
,
R.
,
2007
, “
Cerebrovascular Accidents in Patients With a Ventricular Assist Device
,”
J. Thorac. Cardiovasc. Surg.
,
134
(
1
), pp.
114
123
.10.1016/j.jtcvs.2007.02.044
11.
Starling
,
R.
,
Moazami
,
N.
,
Silvestry
,
S.
,
Ewald
,
G.
,
Rogers
,
J.
,
Milano
,
C.
,
Rame
,
J.
,
Acker
,
M.
,
Blackstone
,
E.
,
Ehrlinger
,
J.
,
Thuita
,
L.
,
Mountis
,
M.
,
Soltesz
,
E.
,
Lytle
,
B.
, and
Smedira
,
N.
,
2014
, “
Unexpected Abrupt Increase in Left Ventricular Assist Device Thrombosis
,”
New Engl. J. Med.
,
370
(
1
), pp.
33
40
.10.1056/NEJMoa1313385
12.
Kirklin
,
J.
,
Naftel
,
D.
,
Kormos
,
R.
,
Pagani
,
F.
,
Myers
,
S.
,
Stevenson
,
L.
,
Acker
,
M.
,
Goldstein
,
D.
,
Silvestry
,
S.
,
Milano
,
C.
,
Baldwin
,
J.
,
Pinney
,
S.
,
Eduardo Rame
,
J.
, and
Miller
,
M.
,
2014
, “
Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) Analysis of Pump Thrombosis in the HeartMate II Left Ventricular Assist Device
,”
J. Heart Lung Transplant.
,
33
(
1
), pp.
12
22
.10.1016/j.healun.2013.11.001
13.
Acharya
,
D.
,
Loyaga-Rendon
,
R.
,
Morgan
,
C. J.
,
Sands
,
K. A.
,
Pamboukian
,
S. V.
,
Rajapreyar
,
I.
,
Holman
,
W. L.
,
Kirklin
,
J. K.
, and
Tallaj
,
J. A.
,
2017
, “
INTERMACS Analysis of Cerebral Embolization During Support With Continuous-Flow Left Ventricular Assist Devices: Risk Factors and Outcomes
,”
JACC Heart Failure
,
5
(
10
), pp.
703
711
.10.1016/j.jchf.2017.06.014
14.
May-Newman
,
K.
,
Hillen
,
B.
,
Sironda
,
C.
, and
Dembitsky
,
W.
,
2004
, “
Effect of LVAD Outflow Conduit Insertion Angle on Flow Through the Native Aorta
,”
J. Med. Eng. Technol.
,
28
(
3
), pp.
105
109
.10.1080/0309190042000193865
15.
Osorio
,
A.
,
Osorio
,
R.
,
Ceballos
,
A.
,
Tran
,
R.
,
Clark
,
W.
,
Divo
,
E.
,
Argueta-Morales
,
I.
,
Kassab
,
A.
, and
DeCampli
,
W.
,
2013
, “
Computational Fluid Dynamics Analysis of Surgical Adjustment of Left Ventricular Assist Device Implantation to Minimize Stroke Risk
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
6
), pp.
622
638
.10.1080/10255842.2011.629616
16.
Argueta-Morales
,
I.
,
Tran
,
R.
,
Clark
,
W.
,
Divo
,
E.
,
Kassab
,
A.
, and
DeCampli
,
W.
,
2010
, “
Use of Computational Fluid Dynamics (CFD) to Tailor the Surgical Implantation of a Ventricular Assist Device (VAD): A Patient-Specific Approach to Reduce Risk of Stroke
,”
J. Am. Coll. Surgeons
,
211
(
3
), pp.
S26
S27
.10.1016/j.jamcollsurg.2010.06.063
17.
Ricardo Argueta-Morales
,
I.
,
Tran
,
R.
,
Ceballos
,
A.
,
Clark
,
W.
,
Osorio
,
R.
,
Divo
,
E.
,
Kassab
,
A.
, and
DeCampli
,
W.
,
2014
, “
Mathematical Modeling of Patient-Specific Ventricular Assist Device Implantation to Reduce Particulate Embolization Rate to Cerebral Vessels
,”
ASME J. Biomech. Eng.
,
136
(
7
), p.
071008
.10.1115/1.4026498
18.
Prather
,
R.
,
2015
, “
A Multi-Scale CFD Analysis of Patient-Specific Geometries to Tailor LVAD Cannula Implantation Under Pulsatile Flow Conditions: An Investigation Aimed at Reducing Stroke Incidence in LVAD
,”
Master's thesis
,
University of Central Florida
, Orlando, FL.https://stars.library.ucf.edu/cgi/viewcontent.cgi?article=2166&context=etd
19.
Prather
,
R.
,
2018
, “
Multi-Scale Fluid-Structure Interaction Model Analysis of Patient-Specific Geometry for Optimization of LVAD Outflow Graft Implantation: An Investigation Aimed at Reducing Stroke Risk
,”
Ph.D. thesis
,
University of Central Florida, Orlando, FL
.http://purl.fcla.edu/fcla/etd/CFE0007077
20.
Prather
,
R. O.
,
Kassab
,
A.
,
Ni
,
M. W.
,
Divo
,
E.
,
Argueta-Morales
,
R.
, and
DeCampli
,
W. M.
,.
2017
, “
Multi-Scale Pulsatile CFD Modeling of Thrombus Transport in a Patient-Specific LVAD Implantation
,”
Int. J. Numer. Methods Heat Fluid Flow
,
27
(
5
), pp.
1022
1039
.10.1108/HFF-10-2016-0378
21.
Sosnowski
,
M.
,
Krzywanski
,
J.
, and
Gnatowska
,
R.
,
2017
, “
Polyhedral Meshing as an Innovative Approach to Computational Domain Discretization of a Cyclone in a Fluidized Bed CLC Unit
,”
E3S Web Conf.
,
14
, p.
01027
.10.1051/e3sconf/20171401027
22.
Spiegel
,
M.
,
Redel
,
T.
,
Zhang
,
Y.
,
Struffert
,
T.
,
Hornegger
,
J.
,
Grossman
,
R.
,
Doerfler
,
A.
, and
Karmonik
,
C.
,
2011
, “
Tetrahedral Vs. Polyhedral Mesh Size Evaluation on Flow Velocity and Wall Shear Stress for Cerebral Hemodynamic Simulation
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
1
), pp.
9
22
.10.1080/10255842.2010.518565
23.
Travis
,
A. R.
,
Giridharan
,
G. A.
,
Pantalos
,
G. M.
,
Dowling
,
R. D.
,
Prabhu
,
S. D.
,
Slaughter
,
M. S.
,
Sobieski
,
M.
,
Undar
,
A.
,
Farrar
,
D. J.
, and
Koenig
,
S. C.
,
2007
, “
Vascular Pulsatility in Patients With a Pulsatile- or Continuous-Flow Ventricular Assist Device
,”
J. Thorac. Cardiovasc. Surg.
,
133
(
2
), pp.
517
524
.10.1016/j.jtcvs.2006.09.057
24.
Purohit
,
S.
,
Cornwell
,
W.
,
Pal
,
J.
,
Lindenfeld
,
J.
, and
Ambardekar
,
A.
,
2018
, “
Living Without a Pulse
,”
Circulation: Heart Failure
,
11
(
6
), p. e004670.10.1161/CIRCHEARTFAILURE.117.004670
25.
Faragallah
,
G.
,
Wang
,
Y.
,
Divo
,
E.
, and
Simaan
,
M.
,
2012
, “
A New Control System for Left Ventricular Assist Devices Based on Patient-Specific Physiological Demand
,”
Inverse Probl. Sci. Eng.
,
20
(
5
), pp.
721
734
.10.1080/17415977.2012.667092
26.
Good
,
B.
,
Deutsch
,
S.
, and
Manning
,
K.
,
2016
, “
Hemodynamics in a Pediatric Ascending Aorta Using a Viscoelastic Pediatric Blood Model
,”
Ann. Biomed. Eng.
,
44
(
4
), pp.
1019
1035
.10.1007/s10439-015-1370-z
27.
Roache
,
P. J.
, 1998,
Verification and Validation in Computational Science and Engineering
,
Hermosa Press
,
Albuquerque, NM.
28.
Maxey
,
M. R.
, and
Riley
,
J. J.
,
1983
, “
Equation of Motion for a Small Rigid Sphere in a Non-Uniform Flow
,”
Phys. Fluids
,
26
(
4
), pp.
883
889
.10.1063/1.864230
29.
Nahirnyak
,
V.
,
Yoon
,
S.
, and
Holland
,
C.
,
2006
, “
Acousto-Mechanical and Thermal Properties of Clotted Blood
,”
J. Acoust. Soc. Am.
,
119
(
6
), pp.
3766
3772
.10.1121/1.2201251
30.
Chhabra
,
R.
,
2006
,
Bubbles, Drops, and Particles in Non-Newtonian Fluids
, 2nd ed.,
CRC Press
,
Boca Raton, FL
.
31.
Devore
,
J.
,
2017
,
Probability and Statistics for Engineering and the Sciences
,
Cengage Learning
,
Boston, MA
.
32.
Ando
,
M.
,
Takewa
,
Y.
,
Nishimura
,
T.
,
Yamazaki
,
K.
,
Kyo
,
S.
,
Ono
,
M.
,
Tsukiya
,
T.
,
Mizuno
,
T.
,
Taenaka
,
Y.
, and
Tatsumi
,
E.
,
2011
, “
A Novel Counterpulsation Mode of Rotary Left Ventricular Assist Devices Can Enhance Myocardial Perfusion
,”
J. Artif. Organs
,
14
(
3
), pp.
185
191
.10.1007/s10047-011-0573-9
33.
Ando
,
M.
,
Takewa
,
Y.
,
Nishimura
,
T.
,
Yamazaki
,
K.
,
Kyo
,
S.
,
Ono
,
M.
,
Tsukiya
,
T.
,
Mizuno
,
T.
,
Taenaka
,
Y.
, and
Tatsumi
,
E.
,
2012
, “
Coronary Vascular Resistance Increases Under Full Bypass Support of Centrifugal Pumps-Relation Between Myocardial Perfusion and Ventricular Workload During Pump Support
,”
Artif. Organs
,
36
(
1
), pp.
105
110
.10.1111/j.1525-1594.2011.01298.x
34.
Umeki
,
A.
,
Nishimura
,
T.
,
Ando
,
M.
,
Takewa
,
Y.
,
Yamazaki
,
K.
,
Kyo
,
S.
,
Ono
,
M.
,
Tsukiya
,
T.
,
Mizuno
,
T.
,
Taenaka
,
Y.
, and
Tatsumi
,
E.
,
2013
, “
Change of Coronary Flow by Continuous-Flow Left Ventricular Assist Device With Cardiac Beat Synchronizing System (Native Heart Load Control System) in Acute Ischemic Heart Failure Model
,”
Circ. J.
,
77
(
4
), pp.
995
1000
.10.1253/circj.CJ-12-0676
You do not currently have access to this content.