Abstract

The increasing prevalence of pulmonary ailments including asthma, chronic obstructive pulmonary disorder, lung tuberculosis, and lung cancer, coupled with the success of pulmonary therapy, has led to a plethora of scientific research focusing on improving the efficacy of pulmonary drug delivery systems. Recent advances in nanoscience and nano-engineering help achieve this by developing stable, potent, inhalable nanosize drug formulations that potentially increase dosages at target sites with significant therapeutic effects. In this study, we numerically analyze a novel methodology of incorporating helical air-nanoparticle streams for pulmonary nanotherapeutics, using a customized version of the open-source computational fluid dynamics (CFD) toolbox openfoam. As nanoparticles predominantly follow streamlines, helical airflow transports them in a centralized core along the human upper respiratory tract, thereby minimizing deposition and hence waste on the oropharyngeal walls, potentially also reducing the risk of drug-induced toxicity in healthy tissues. Advancing our previous study on micron-particle dynamics, helical streams are shown to improve the delivery of nanodrugs, to deeper lung regions when compared to a purely axial fluid-particle jet. For example, an optimal helical stream featuring a volumetric flow rate of 30 L/min, increased the delivery of 300-nm particles to regions beyond generation 3 by 5%, in comparison to a conventional axial jet. Results from regional deposition studies are presented to demonstrate the robustness of helical flows in pulmonary drug delivery, thus paving the way toward successful implementation of the novel methodology in nanotherapeutics.

References

1.
Paranjpe
,
M.
, and
Müller-Goymann
,
C.
,
2014
, “
Nanoparticle-Mediated Pulmonary Drug Delivery: A Review
,”
IJMS
,
15
(
4
), pp.
5852
5873
.10.3390/ijms15045852
2.
Newman
,
S. P.
,
2017
, “
Drug Delivery to the Lungs: Challenges and Opportunities
,”
Ther. Deliv.
,
8
(
8
), pp.
647
661
.10.4155/tde-2017-0037
3.
Kleinstreuer
,
C.
,
Zhang
,
Z.
, and
Donohue
,
J. F.
,
2008
, “
Targeted Drug-Aerosol Delivery in the Human Respiratory System
,”
Annu. Rev. Biomed. Eng.
,
10
(
1
), pp.
195
220
.10.1146/annurev.bioeng.10.061807.160544
4.
Stein
,
S. W.
, and
Thiel
,
C. G.
,
2017
, “
The History of Therapeutic Aerosols: A Chronological Review
,”
J. Aerosol Med. Pulm. Drug Deliv.
,
30
(
1
), pp.
20
41
.10.1089/jamp.2016.1297
5.
Borgström
,
L.
,
Olsson
,
B.
, and
Thorsson
,
L.
,
2006
, “
Degree of Throat Deposition Can Explain the Variability in Lung Deposition of Inhaled Drugs
,”
J. Aerosol Med.
,
19
(
4
), pp.
473
483
.10.1089/jam.2006.19.473
6.
Bisgaard
,
H.
,
1995
, “
A Metal Aerosol Holding Chamber Devised for Young Children With Asthma
,”
Eur. Respir. J.
,
8
(
5
), pp.
856
860
.https://erj.ersjournals.com/content/8/5/856
7.
Chandel
,
A.
,
Goyal
,
A. K.
,
Ghosh
,
G.
, and
Rath
,
G.
,
2019
, “
Recent Advances in Aerosolised Drug Delivery
,”
Biomed. Pharmacother.
,
112
, p.
108601
.10.1016/j.biopha.2019.108601
8.
Kleinstreuer
,
C.
,
Shi
,
H.
, and
Zhang
,
Z.
,
2007
, “
Computational Analyses of a Pressurized Metered Dose Inhaler and a New Drug–Aerosol Targeting Methodology
,”
J. Aerosol Med.
,
20
(
3
), pp.
294
309
.10.1089/jam.2006.0617
9.
Rahmatalla
,
M. F.
,
Zuberbuhler
,
P. C.
,
Lange
,
C. F.
, and
Finlay
,
W. H.
,
2002
, “
In Vitro Effect of a Holding Chamber on the Mouth-Throat Deposition of QVAR® (Hydrofluoroalkane-Beclomethasone Dipropionate)
,”
J. Aerosol Med.
,
15
(
4
), pp.
379
385
.10.1089/08942680260473452
10.
Lavorini
,
F.
,
Fontana
,
G. A.
, and
Usmani
,
O. S.
,
2014
, “
New Inhaler Devices - The Good, the Bad and the Ugly
,”
Respiration
,
88
(
1
), pp.
3
15
.10.1159/000363390
11.
Kleinstreuer
,
C.
,
2006
,
Biofluid Dynamics: Principles and Selected Applications
,
CRC Press
, Boca Raton, FL.
12.
Kleinstreuer
,
C.
,
Zhang
,
Z.
,
Li
,
Z.
,
Roberts
,
W. L.
, and
Rojas
,
C.
,
2008
, “
A New Methodology for Targeting Drug-Aerosols in the Human Respiratory System
,”
Int. J. Heat Mass Transfer
,
51
(
23–24
), pp.
5578
5589
.10.1016/j.ijheatmasstransfer.2008.04.052
13.
Kleinstreuer
,
C.
, and
Zhang
,
Z.
,
2003
, “
Targeted Drug Aeroso Deposition Analysis for a Four-Generation Lung Airway Model With Hemispherical Tumors
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
197
206
.10.1115/1.1543548
14.
Childress
,
E.
, and
Kleinstreuer
,
C.
,
2014
, “
Computationally Efficient Particle Release Map Determination for Direct Tumor-Targeting in a Representative Hepatic Artery System
,”
ASME J. Biomech. Eng.
,
136
(
1
), p. 011012.10.1115/1.4025881
15.
Kleinstreuer
,
C.
,
Feng
,
Y.
, and
Childress
,
E.
,
2014
, “
Drug-Targeting Methodologies With Applications: A Review
,”
World J. Clin. Cases: WJCC
,
2
(
12
), p.
742
.10.12998/wjcc.v2.i12.742
16.
Gu
,
X.
,
Wen
,
J.
,
Wang
,
M.
,
Jian
,
G.
,
Zheng
,
G.
, and
Wang
,
S.
,
2019
, “
Numerical Investigation of Unsteady Particle Deposition in a Realistic Human Nasal Cavity During Inhalation
,”
Exp. Comput. Multiphase Flow
,
1
(
1
), pp.
39
50
.10.1007/s42757-019-0007-0
17.
Kolanjiyil
,
A. V.
,
Kleinstreuer
,
C.
, and
Sadikot
,
R. T.
,
2017
, “
Computationally Efficient Analysis of Particle Transport and Deposition in a Human Whole-Lung-Airway Model. Part II: Dry Powder Inhaler Application
,”
Comput. Biol. Med.
,
84
, pp.
247
253
.10.1016/j.compbiomed.2016.10.025
18.
Gurumurthy
,
A.
, and
Kleinstreuer
,
C.
,
2020
, “
Helical Fluid-Particle Flow Dynamics for Controlling Micron-Particle Deposition in a Representative Human Upper Lung-Airway Model
,”
J. Aerosol Sci.
, p.
105656
.10.1016/j.jaerosci.2020.105656
19.
Dolovich
,
M. A.
,
2000
, “
Influence of Inspiratory Flow Rate, Particle Size, and Airway Caliber on Aerosolized Drug Delivery to the Lung
,”
Respir. Care
,
45
(
6
), p.
597
.
20.
Amararathna
,
M.
,
Goralski
,
K.
,
Hoskin
,
D.
, and
Rupasinghe
,
H. P.
,
2019
, “
Pulmonary Nano-Drug Delivery Systems for Lung Cancer: Current Knowledge and Prospects
,”
J. Lung Health Dis
,
3
(
2
), pp.
11
28
.10.29245/2689-999X/2019/2.1148
21.
Li
,
H.-Y.
, and
Zhang
,
F.
,
2020
, “
Preparation of Spray-Dried Nanoparticles for Efficient Drug Delivery to the Lungs
,”
Nanoparticles in Biology and Medicine
,
E.
Ferrari
, and
M.
Soloviev
, eds.,
Springer US
,
New York
, pp.
139
145
.
22.
Lee
,
W.-H.
,
Loo
,
C.-Y.
,
Ghadiri
,
M.
,
Leong
,
C.-R.
,
Young
,
P. M.
, and
Traini
,
D.
,
2018
, “
The Potential to Treat Lung Cancer Via Inhalation of Repurposed Drugs
,”
Adv. Drug Delivery Rev.
,
133
, pp.
107
130
.10.1016/j.addr.2018.08.012
23.
Cipolla
,
D. C.
, and
Gonda
,
I.
,
2011
, “
Formulation Technology to Repurpose Drugs for Inhalation Delivery
,”
Drug Disc. Today Ther. Strat.
,
8
(
3–4
), pp.
123
130
.10.1016/j.ddstr.2011.07.001
24.
Anderson
,
C. F.
,
Grimmett
,
M. E.
,
Domalewski
,
C. J.
, and
Cui
,
H.
,
2020
, “
Inhalable Nanotherapeutics to Improve Treatment Efficacy for Common Lung Diseases
,”
WIREs Nanomed. Nanobiotechnol.
,
12
(
1
), p. e1586.10.1002/wnan.1586
25.
Ferrari
,
E.
, and
Soloviev
,
M.
, eds.,
2020
,
Nanoparticles in Biology and Medicine: Methods and Protocols
,
Springer US
,
New York
.
26.
Kolanjiyil
,
A. V.
,
2016
, “
Whole-Lung Airflow and Particle Transport/Deposition Modeling
,” Doctoral dissertation, NC State University, Raleigh, NC.
27.
Su
,
W.-C.
, and
Cheng
,
Y. S.
,
2006
, “
Fiber Deposition Pattern in Two Human Respiratory Tract Replicas
,”
Inhal. Toxicol.
,
18
(
10
), pp.
749
760
.10.1080/08958370600748513
28.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
,
2011
, “
Laminar-to-Turbulent Fluid-Nanoparticle Dynamics Simulations: Model Comparisons and Nanoparticle-Deposition Applications
,”
Int. J. Numer. Meth. Biomed. Eng.
,
27
(
12
), pp.
1930
1950
.10.1002/cnm.1447
29.
Menter
,
F. R.
,
Kuntz
,
M.
, and
Langtry
,
R.
,
2003
, “
Ten Yearsof Industrial Experience With the SST Turbulence Model
,”
Turbul. Heat Mass Transfer
,
4
(
1
), pp.
625
632
.https://www.researchgate.net/profile/Florian-Menter/publication/228742295_Ten_years_of_industrial_experience_with_the_SST_turbulence_model/links/0046353c6330b1c0a4000000/Ten-years-of-industrial-experience-with-the-SST-turbulence-model.pdf
30.
Kleinstreuer
,
C.
,
2010
,
Modern Fluid Dynamics
,
Springer
,
Dordrecht, The Netherlands
.
31.
Michaelides
,
E. E.
,
1997
, “
Review—The Transient Equation of Motion for Particles, Bubbles, and Droplets
,”
ASME J. Fluids Eng.
,
119
(
2
), pp.
233
247
.10.1115/1.2819127
32.
Crowe
,
C. T.
,
Schwarzkopf
,
J. D.
,
Sommerfeld
,
M.
, and
Tsuji
,
Y.
,
2011
,
Multiphase Flows With Droplets and Particles
,
CRC Press
, Boca Raton, FL.
33.
Vaish
,
M.
,
Kleinstreuer
,
C.
,
Kolanjiyil
,
A. V.
,
Saini
,
N.
, and
Pillalamarri
,
N. R.
,
2016
, “
Laminar/Turbulent Airflow and Microsphere Deposition in a Patient-Specific Airway Geometry Using an Open-Source Solver
,”
Int. J. Biomed. Eng. Technol.
, 22(2), pp.
145
161
.10.1504/IJBET.2016.079145
34.
Abouali
,
O.
,
Nikbakht
,
A.
,
Ahmadi
,
G.
, and
Saadabadi
,
S.
,
2009
, “
Three-Dimensional Simulation of Brownian Motion of Nano-Particles in Aerodynamic Lenses
,”
Aerosol Sci. Technol.
,
43
(
3
), pp.
205
215
.10.1080/02786820802587888
35.
Box
,
G. E. P.
, and
Muller
,
M. E.
,
1958
, “
A Note on the Generation of Random Normal Deviates
,”
Ann. Math. Stat.
,
29
(
2
), pp.
610
611
.10.1214/aoms/1177706645
36.
Papoulis
,
A.
, and
Pillai
,
S. U.
,
2002
,
Probability, Random Variables, and Stochastic Processes
,
McGraw-Hill Education
, New York.
37.
Wei
,
X.
,
Hindle
,
M.
,
Kaviratna
,
A.
,
Huynh
,
B. K.
,
Delvadia
,
R. R.
,
Sandell
,
D.
, and
Byron
,
P. R.
,
2018
, “
In Vitro Tests for Aerosol Deposition—VI: Realistic Testing With Different Mouth–Throat Models and In Vitro—In Vivo Correlations for a Dry Powder Inhaler, Metered Dose Inhaler, and Soft Mist Inhaler
,”
J. Aerosol Med. Pulm. Drug Deliv.
,
31
(
6
), pp.
358
371
.10.1089/jamp.2018.1454
38.
Kolanjiyil
,
A. V.
, and
Kleinstreuer
,
C.
,
2017
, “
Computational Analysis of Aerosol-Dynamics in a Human Whole-Lung Airway Model
,”
J. Aerosol Sci.
,
114
, pp.
301
316
.10.1016/j.jaerosci.2017.10.001
39.
Zhang
,
Z.
,
Kleinstreuer
,
C.
,
Donohue
,
J. F.
, and
Kim
,
C. S.
,
2005
, “
Comparison of Micro- and Nano-Size Particle Depositions in a Human Upper Airway Model
,”
J. Aerosol Sci.
,
36
(
2
), pp.
211
233
.10.1016/j.jaerosci.2004.08.006
40.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
,
2004
, “
Airflow Structures and Nano-Particle Deposition in a Human Upper Airway Model
,”
J. Comput. Phys.
,
198
(
1
), pp.
178
210
.10.1016/j.jcp.2003.11.034
41.
Cheng
,
Y.-S.
,
Zhou
,
Y.
, and
Chen
,
B. T.
,
1999
, “
Particle Deposition in a Cast of Human Oral Airways
,”
Aerosol Sci. Technol.
,
31
(
4
), pp.
286
300
.10.1080/027868299304165
42.
Li
,
A.
, and
Ahmadi
,
G.
,
1992
, “
Dispersion and Deposition of Spherical Particles From Point Sources in a Turbulent Channel Flow
,”
Aerosol Sci. Technol.
,
16
(
4
), pp.
209
226
.10.1080/02786829208959550
43.
Ounis
,
H.
,
Ahmadi
,
G.
, and
McLaughlin
,
J. B.
,
1991
, “
Brownian Diffusion of Submicrometer Particles in the Viscous Sublayer
,”
J. Colloid Interface Sci.
,
143
(
1
), pp.
266
277
.10.1016/0021-9797(91)90458-K
44.
Zhang
,
Z.
, and
Kleinstreuer
,
C.
,
2003
, “
Low-Reynolds-Number Turbulent Flows in Locally Constricted Conduits: A Comparison Study
,”
AIAA J.
,
41
(
5
), pp.
831
840
.10.2514/2.2044
45.
Gurumurthy
,
A.
,
2018
, “
Lung-Aerosol Dynamics Simulations With Novel Applications to Vaping Devices
,” Master's thesis, NC State University, Raleigh, NC.
You do not currently have access to this content.