Abstract

Nobel Laureate von Békésy first presented traveling wave theory, which explains the vibration mechanism of the basilar membrane (BM) of cochlea in 1960, and thus the mysterious veil of passive phonoreceptive mechanism of human cochlea was unveiled. However, the interpretation of active phonoreceptive mechanism of human cochlea has been a major medical problem for mankind. The active mechanism can be reflected in structures and the perilymph where a series of complex coupling nonlinear motion process is observed in the cochlea. Because the cochlea is small and complex, vibration data of the whole BM are not yet available from existing experiments. To address the problem, first, the motion equations of the organ of Corti (OHC) are established, and the circuit equations of the outer hair cells (OHCs) in the perilymph and the relationship between the motion of the outer hair cells and the electromotile force are derived. Then the active feedback force on the BM is obtained. Finally, an analytical–numerical combination model, where both macrostructures and microstructures of cochlea are included, is established. The model not only vividly depicts the spatial helical body and biological materials of the cochlea but also reflects the fluid–solid coupling nonlinear motion of cochlear structures in the electrical environment. Thus, the active hearing mechanism of cochlea is revealed.

References

1.
Russell
,
I. J.
, and
Sellick
,
P. M.
,
1977
, “
Tuning Properties of Cochlear Hair Cells
,”
Nature
,
267
(
5614
), pp.
858
860
.10.1038/267858a0
2.
Gwenelle
,
S. G.
, and
Jessfrey
,
R. H.
,
2014
, “
Sound Strategies for Hearing Restoration
,”
Science
,
344
(
6184
), pp.
596
605
.10.1126/science.1241062
3.
Prosen
,
C.
,
1981
, “
Auditory Intensity Discrimination After Selective Loss of Cochlear Outer Hair Cells
,”
Science
,
12
(
4500
), pp.
1286
1288
.10.1126/science.7233219
4.
Nam
,
J. H.
, and
Robert
,
F.
,
2010
, “
Force Transmission in the Organ of Corti Micromachine
,”
Biophys. J.
,
98
(
12
), pp.
2813
2821
.10.1016/j.bpj.2010.03.052
5.
Colantonio
,
J. R.
,
Vermot
,
J.
,
Wu
,
D.
,
Langenbacher
,
A. D.
,
Fraser
,
S.
,
Chen
,
J.-N.
, and
Hill
,
K. L.
,
2009
, “
The Dynein Regulatory Complex is Required for Ciliary Motility and Otolith Biogenesis in the Inner Ear
,”
Nature
,
457
(
7226
), pp.
205
209
.10.1038/nature07520
6.
Givelberg
,
E.
, and
Bunn
,
J.
,
2003
, “
A Comprehensive Three-Dimensional Model of the Cochlea
,”
J. Comput. Phys.
,
191
(
2
), pp.
377
391
.10.1016/S0021-9991(03)00319-X
7.
Bekesy
,
G. V.
,
1960
,
Experiments in Hearing
,
McGraw-Hill Book Company
,
New York, NY
, pp.
1
190
.
8.
Khanna
,
S. M.
, and
Leonard
,
D. G.
,
1982
, “
Basilar Membrane Tuning in the Cat Cochlea
,”
Science
,
15
(
4530
), pp.
305
306
.10.1126/science.7053580
9.
Greenwood
,
D.
,
1977
, “
Empirical Travel Time Functions on the Basilar Membrane
,”
Psychophysics Physiology of Hearing
, E. F. Evans and J. P. Wilson, eds., Academic Press, New York, pp.
43
53
.
10.
Lim
,
K. M.
, and
Li
,
H.
,
2007
, “
A Coupled Boundary Element/Finite Difference Method for Fluid-Structure Interaction With Application to Dynamic Analysis of Outer Hair Cells
,”
Comput. Struct.
,
85
(
11–14
), pp.
911
922
.10.1016/j.compstruc.2007.01.003
11.
Steele
,
C. R.
, and
Puria
,
S.
,
2005
, “
Force on Inner Hair Cell Cilia
,”
Int. J. Solid Struct.
,
42
(
21–22
), pp.
5887
5904
.10.1016/j.ijsolstr.2005.03.056
12.
Chen
,
F.
,
Zha
,
D.
,
Fridberger
,
A.
,
Zheng
,
J.
,
Choudhury
,
N.
,
Jacques
,
S. L.
,
Wang
,
R. K.
,
Shi
,
X.
, and
Nuttall
,
A. L.
,
2011
, “
A Differentially Amplified Motion in the Ear for Near-Threshold Sound Detection
,”
Nat. Neurosci.
,
14
(
6
), pp.
770
774
.10.1038/nn.2827
13.
Ma
,
J.
, and
Yao
,
W.
,
2014
, “
Research on the Distribution of Pressure Field on the Basilar Membrane in the Passive Spiral Cochlea
,”
J. Mech. Med. Biol.
,
14
(
04
), pp.
1450061
091005
.10.1142/S0219519414500614
14.
Zhang
,
X.
, and
Gan
,
R. Z.
,
2011
, “
A Comprehensive Model of Human Ear for Analysis of Implantable Hearing Devices
,”
IEEE Trans. Bio-Med. Eng.
,
58
(
10
), pp.
3024
3027
.10.1109/TBME.2011.2159714
15.
Gan
,
R. Z.
,
Reeves
,
B. P.
, and
Wang
,
X.
,
2007
, “
Modeling of Sound Transmission From Ear Canal to Cochlea
,”
Ann. Biomed. Eng.
,
35
(
12
), pp.
2180
2195
.10.1007/s10439-007-9366-y
16.
Nam
,
J. H.
, and
Robert
,
F.
,
2011
, “
A Cochlear Partition Model Incorporating Realistic Electrical and Mechanical Parameters for Outer Hair Cells
,”
AIP Conf. Proc.
,
1403
, pp.
170
175
.10.1063/1.3658081
17.
Kennedy
,
H. J.
,
Crawford
,
A. C.
, and
Fettiplace
,
R.
,
2005
, “
Force Generation by Mammalian Hair Bundles Supports a Role in Cochlear Amplification
,”
Nature
,
433
(
7028
), pp.
880
883
.10.1038/nature03367
18.
Ren
,
T.
,
He
,
W.
, and
Gillespie
,
P. G.
,
2011
, “
Measurement of Cochlear Power Gain in the Sensitive Gerbil Ear
,”
Nat. Commun.
,
2
, p.
216
.10.1038/ncomms1226
19.
Ren
,
T.
,
He
,
W.
, and
Gillespie
,
P. G.
,
2011
, “
Scanning Interferometry of Basilar Membrane Vibration in Sensitive Gerbil Cochlea
,”
Protoc. Exch.
, epub.10.1038/protex.2011.207
20.
Kros
,
C.
,
2005
, “
Hearing: Aid From Hair Force
,”
Nature
,
433
(
7028
), pp.
810
811
.10.1038/433810a
21.
Sasmal
,
A.
, and
Grosh
,
K.
,
2019
, “
Unified Cochlear Model for Low- and High- Frequency Mammalian Hearing
,”
PNAS
,
116
(
28
), pp.
13983
13988
.10.1073/pnas.1900695116
22.
Hamid
,
M.
,
Joris
,
A. M.
, and
Puria
,
S.
,
2018
, “
Cochlear Amplification and Tuning Depend on the Cellular Arrangement Within the Organ of Corti
,”
PNAS
,
115
(
22
), pp.
5762
5767
.10.1073/pnas.1720979115
23.
Yao
,
W.
,
Chen
,
Y.
, and
Ma
,
J.
,
2016
, “
Numerical Simulation on the Dynamic Behavior of the Basilar Membrane in the Spiral Cochlea
,”
Biomed. Res.
,
27
(
3
), pp.
977
984
.
24.
Yao
,
W.
,
Chen
,
Y.
, and
Ma
,
J.
,
2013
, “
Amplitude Analysis of Basement Membrane
,”
J. Invest. Med.
,
61
, p.
15
.
25.
Hudspeth
,
A. J.
,
1985
, “
The Cellular Basis of Hearing: Biophysics of Hair Cells
,”
Science
,
15
(
230
), pp.
745
752
.10.1126/science.2414845
26.
Liu
,
S.
, and
White
,
R. D.
,
2008
, “
Orthotropic Material Properties of the Gerbil Basilar Membrane
,”
J. Acoust. Soc. Am.
,
123
(
4
), pp.
2160
2171
.10.1121/1.2871682
27.
Kondrachuk
,
A. V.
,
Sirenko
,
S. P.
, and
Boyle
,
R.
,
2008
, “
Effect of Difference of Cupula and Endolymph Densities on the Dynamics of Semicircular
,”
J. Vestibul. Res. Equil.
,
18
(
2–3
), pp.
69
88
.
28.
Yao
,
W.
,
Ma
,
J.
, and
Huang
,
X.
,
2013
, “
Numerical Simulation of the Human Ear and the Dynamic Analysis of the Middle Ear Sound Transmission
,”
J. Instrum.
,
8
(
6
), pp.
1
13
.10.1088/1748-0221/8/06/C06009
29.
Gundersen
,
T.
,
Skarstein
,
O.
, and
Sikkeland
,
T.
,
1978
, “
A Study of the Vibration of the Basilar Membrane in Human Temporal Bone Preparations by the Use of the Mossbauer Effect
,”
Acta. Otolaryngol.
,
86
(
1–6
), pp.
225
257
.10.3109/00016487809124740
30.
Stenfelt
,
S.
,
Puria
,
S.
,
Hato
,
N.
, and
Goode
,
R. L.
,
2003
, “
Basilar Membrane and Osseous Spiral Lamina Motion in Human Cadavers With Air and Bone Conduction Stimuli
,”
Hear. Res.
,
181
(
1–2
), pp.
131
143
.10.1016/S0378-5955(03)00183-7
31.
Ruggero
,
M.
,
Rich
,
N. C.
,
Recio
,
A.
,
Narayan
,
S. S.
, and
Robles
,
L.
,
1997
, “
Basilar Membrane Responses to Tones at the Base of the Chinchilla Cochlea
,”
J. Acoust. Soc. Am.
,
101
(
4
), pp.
2151
2163
.10.1121/1.418265
32.
Greenwood
,
D. D.
,
1996
, “
Comparing Octaves, Frequency Ranges, and Cochlear map Curvature Across Species
,”
Hear. Res.
,
94
(
1–2
), pp.
157
162
.10.1016/0378-5955(95)00229-4
You do not currently have access to this content.