Abstract

Soft tissues observed in clinical medical images are often prestrained in tension by internal pressure or tissue hydration. For a native disc, nucleus swelling occurs in equilibrium with osmotic pressure induced by the high concentration of proteoglycan in the nucleus. The objective of this computational study was to investigate the effects of nucleus swelling on disc geometry, fiber orientation, and mechanical behavior by comparing those of prestrained and zero-pressure (unswelled) discs. Thermoelastic analysis techniques were repurposed in order to determine the zero-pressure disc geometry which, when pressurized, matches the prestrained disc geometry observed in clinical images. The zero-pressure geometry was then used in simulations to approximately represent a degenerated disc, which loses the ability of nucleus swelling but has not undergone distinct soft tissue remodeling/disruption. Our simulation results demonstrated that the loss of nucleus swelling caused a slight change in the disc geometry and fiber orientation, but a distinct deterioration in the resistance to intervertebral rotations including sagittal bending, lateral bending, and axial torsion. Different from rotational loading, in compression (with a displacement of 0.45 mm applied), a much larger stiffness (3.02 KN/mm) and a greater intradiscal pressure (IDP) (0.61 MPa) were measured in the zero-pressure disc, compared to the prestrained disc (1.41 KN/mm and 0.52 MPa). This computational study could be useful to understand mechanisms of disc degeneration, and guide the future design of disc tissue engineering material and biomimic disc implants.

References

1.
Bartel
,
D. L.
,
Davy
,
D. T.
, and
Keaveny
,
T. M.
,
2006
,
Orthopaedic Biomechanics: Mechanics and Design in Musculoskeletal Systems
,
Pearson/Prentice Hall
, Upper Saddle River, NJ.
2.
Urban
,
J. P. G.
, and
McMullin
,
J. F.
,
1988
, “
Swelling Pressure of the Lumbar Intervertebral Discs: Influence of Age, Spinal Level, Composition, and Degeneration
,”
Spine (Phila Pa 1976)
,
13
(
2
), pp.
179
187
.10.1097/00007632-198802000-00009
3.
Iatridis
,
J. C.
,
Weidenbaum
,
M.
,
Setton
,
L. A.
, and
Mow
,
V. C.
,
1996
, “
Is the Nucleus Pulposus a Solid or a Fluid
,”
Spine (Phila Pa 1976)
,
21
(
10
), pp.
1174
1184
.10.1097/00007632-199605150-00009
4.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C. A. J.
,
Feigl
,
G.
, and
Regitnig
,
P.
,
2005
, “
Single Lamellar Mechanics of the Human Lumbar Anulus Fibrosus
,”
Biomech. Model. Mechanobiol.
,
3
(
3
), pp.
125
140
.10.1007/s10237-004-0053-8
5.
Zhu
,
D.
,
Gu
,
G.
,
Wu
,
W.
,
Gong
,
H.
,
Zhu
,
W.
,
Jiang
,
T.
, and
Cao
,
Z.
,
2008
, “
Micro-Structure and Mechanical Properties of Annulus Fibrous of the L4-5 and L5-S1 Intervertebral Discs
,”
Clin. Biomech.
,
23
(
Suppl.1
), pp.
74
82
.10.1016/j.clinbiomech.2008.04.007
6.
Skaggs
,
D. L.
,
Weidenbaum
,
M.
,
Latridis
,
J. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1994
, “
Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Anulus Fibrosus
,”
Spine (Phila Pa 1976)
,
19
(
12
), pp.
1310
1319
.10.1097/00007632-199406000-00002
7.
Cassidy
,
J.
,
Hiltner
,
A.
, and
Baer
,
E.
,
1989
, “
Hierarchical Structure of the Intervertebral Disc
,”
Connect. Tissue Res.
,
2
, pp.
75
88
.10.3109/03008208909103905
8.
Marini
,
G.
,
Huber
,
G.
,
Püschel
,
K.
, and
Ferguson
,
S. J.
,
2015
, “
Nonlinear Dynamics of the Human Lumbar Intervertebral Disc
,”
J. Biomech.
,
48
(
3
), pp.
479
488
.10.1016/j.jbiomech.2014.12.006
9.
Jacobs
,
N. T.
,
Cortes
,
D. H.
,
Peloquin
,
J. M.
,
Vresilovic
,
E. J.
, and
Elliott
,
D. M.
,
2014
, “
Validation and Application of an Intervertebral Disc Finite Element Model Utilizing Independently Constructed Tissue-Level Constitutive Formulations That Are Nonlinear, Anisotropic, and Time-Dependent
,”
J. Biomech.
,
47
(
11
), pp.
2540
2546
.10.1016/j.jbiomech.2014.06.008
10.
Ambard
,
D.
, and
Cherblanc
,
F.
,
2009
, “
Mechanical Behavior of Annulus Fibrosus: A Microstructural Model of Fibers Reorientation
,”
Ann. Biomed. Eng.
,
37
(
11
), pp.
2256
2265
.10.1007/s10439-009-9761-7
11.
Heuer
,
F.
,
Schmidt
,
H.
,
Klezl
,
Z.
,
Claes
,
L.
, and
Wilke
,
H.-J.
,
2007
, “
Stepwise Reduction of Functional Spinal Structures Increase Range of Motion and Change Lordosis Angle
,”
J. Biomech.
,
40
(
2
), pp.
271
280
.10.1016/j.jbiomech.2006.01.007
12.
Gardiner
,
J. C.
, and
Weiss
,
J. A.
,
2003
, “
Subject-Specific Finite Element Analysis of the Human Medial Collateral Ligament During Valgus Knee Loading
,”
J. Orthop. Res.
,
21
(
6
), pp.
1098
1106
.10.1016/S0736-0266(03)00113-X
13.
Peña
,
E.
,
Martinez
,
M. A.
,
Calvo
,
B.
, and
Doblaré
,
M.
,
2006
, “
On the Numerical Treatment of Initial Strains in Biological Soft Tissues
,”
Int. J. Numer. Methods Eng.
,
68
(
8
), pp.
836
860
.10.1002/nme.1726
14.
Riveros
,
F.
,
Chandra
,
S.
,
Finol
,
E. A.
,
Gasser
,
T. C.
, and
Rodriguez
,
J. F.
,
2013
, “
A Pull-Back Algorithm to Determine the Unloaded Vascular Geometry in Anisotropic Hyperelastic AAA Passive Mechanics
,”
Ann. Biomed. Eng.
,
41
(
4
), pp.
694
708
.10.1007/s10439-012-0712-3
15.
Studer
,
H. P.
,
Riedwyl
,
H.
,
Amstutz
,
C. A.
,
Hanson
,
J. V. M.
, and
Büchler
,
P.
,
2013
, “
Patient-Specific Finite-Element Simulation of the Human Cornea: A Clinical Validation Study on Cataract Surgery
,”
J. Biomech.
,
46
(
4
), pp.
751
758
.10.1016/j.jbiomech.2012.11.018
16.
Marini
,
G.
,
Studer
,
H.
,
Huber
,
G.
,
Püschel
,
K.
, and
Ferguson
,
S. J.
,
2016
, “
Geometrical Aspects of Patient-Specific Modelling of the Intervertebral Disc: Collagen Fibre Orientation and Residual Stress Distribution
,”
Biomech. Model. Mechanobiol.
,
15
(
3
), pp.
543
560
.10.1007/s10237-015-0709-6
17.
Marini
,
G.
, and
Ferguson
,
S. J.
,
2014
, “
Modelling the Influence of Heterogeneous Annulus Material Property Distribution on Intervertebral Disk Mechanics
,”
Ann. Biomed. Eng.
,
42
(
8
), pp.
1760
1772
.10.1007/s10439-014-1025-5
18.
Quapp
,
K. M.
, and
Weiss
,
J. A.
,
1998
, “
Material Characterization of Human Medial Collateral Ligament
,”
ASME J. Biomed. Eng.
,
120
(
6
), pp.
757
763
.10.1115/1.2834890
19.
ANSYS,
2018
, “
6.5. Initial-State Limitations, Mechanical APDL Advanced Analysis Guide Release 2019 R1
,” ANSYS, Inc., Canonsburg, PA.
20.
Adams
,
M.
, and
Roughley
,
P. J.
,
2006
, “
What is Intervertebral Disc Degeneration, and What Causes It?
,”
Spine (Phila Pa 1976)
,
31
(
18
), pp.
2151
2161
.10.1097/01.brs.0000231761.73859.2c
21.
Iatridis
,
J. C.
,
Nicoll
,
S. B.
,
Michalek
,
A. J.
,
Walter
,
B. A.
, and
Gupta
,
M. S.
,
2013
, “
Role of Biomechanics in Intervertebral Disc Degeneration and Regenerative Therapies
,”
Spine J.
,
13
(
3
), pp.
243
262
.10.1016/j.spinee.2012.12.002
22.
Rohlmann
,
A.
,
Zander
,
T.
,
Schmidt
,
H.
,
Wilke
,
H. J.
, and
Bergmann
,
G.
,
2006
, “
Analysis of the Influence of Disc Degeneration on the Mechanical Behaviour of a Lumbar Motion Segment Using the Finite Element Method
,”
J. Biomech.
,
39
(
13
), pp.
2484
2490
.10.1016/j.jbiomech.2005.07.026
23.
Schmidt
,
H.
,
Kettler
,
A.
,
Rohlmann
,
A.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2007
, “
The Risk of Disc Prolapses With Complex Loading in Different Degrees of Disc Degeneration—A Finite Element Analysis
,”
Clin. Biomech.
,
22
(
9
), pp.
988
998
.10.1016/j.clinbiomech.2007.07.008
24.
Kim
,
H. J.
,
Kang
,
K. T.
,
Chun
,
H. J.
,
Lee
,
C. K.
,
Chang
,
B. S.
, and
Yeom
,
J. S.
,
2015
, “
The Influence of Intrinsic Disc Degeneration of the Adjacent Segments on Its Stress Distribution After One-Level Lumbar Fusion
,”
Eur. Spine J.
,
24
(
4
), pp.
827
837
.10.1007/s00586-014-3462-0
25.
Štern
,
D.
,
Likar
,
B.
,
Pernuš
,
F.
, and
Vrtovec
,
T.
,
2011
, “
Parametric Modelling and Segmentation of Vertebral Bodies in 3D CT and MR Spine Images
,”
Phys. Med. Biol.
,
56
(
23
), pp.
7505
7522
.10.1088/0031-9155/56/23/011
26.
Korez
,
R.
,
Likar
,
B.
,
Pernuš
,
F.
, and
Vrtovec
,
T.
,
2014
, “
Parametric Modeling of the Intervertebral Disc Space in 3D: Application to CT Images of the Lumbar Spine
,”
Comput. Med. Imaging Graph.
,
38
(
7
), pp.
596
605
.10.1016/j.compmedimag.2014.04.008
27.
Allaire
,
B. T.
,
Depaolis Kaluza
,
M. C.
,
Bruno
,
A. G.
,
Samelson
,
E. J.
,
Kiel
,
D. P.
,
Anderson
,
D. E.
, and
Bouxsein
,
M. L.
,
2017
, “
Evaluation of a New Approach to Compute Intervertebral Disc Height Measurements From Lateral Radiographic Views of the Spine
,”
Eur. Spine J.
,
26
(
1
), pp. 167–172.10.1007/s00586-016-4817-5
28.
Van Der Houwen
,
E. B.
,
Baron
,
P.
,
Veldhuizen
,
A. G.
,
Burgerhof
,
J. G. M.
,
Van Ooijen
,
P. M. A.
, and
Verkerke
,
G. J.
,
2010
, “
Geometry of the Intervertebral Volume and Vertebral Endplates of the Human Spine
,”
Ann. Biomed. Eng.
,
38
(
1
), pp.
33
40
.10.1007/s10439-009-9827-6
29.
Wilke
,
H. J.
,
Neef
,
P.
,
Caimi
,
M.
,
Hoogland
,
T.
, and
Claes
,
L. E.
,
1999
, “
New In Vivo Measurements of Pressures in the Intervertebral Disc in Daily Life
,”
Spine (Phila Pa 1976).
,
24
(
8
), pp.
755
–7
62
.10.1097/00007632-199904150-00005
30.
Schmidt
,
H.
,
Heuer
,
F.
,
Simon
,
U.
,
Kettler
,
A.
,
Rohlmann
,
A.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2006
, “
Application of a New Calibration Method for a Three-Dimensional Finite Element Model of a Human Lumbar Annulus Fibrosus
,”
Clin. Biomech.
,
21
(
4
), pp.
337
344
.10.1016/j.clinbiomech.2005.12.001
31.
Zhou
,
C.
,
2018
, “
Multi-Objective Design Optimization of a Mobile-Bearing Total Disc Arthroplasty Considering Spinal Kinematics, Facet Joint Loads, and Metal-on-Polyethylene Contact Mechanics
,”
ProQuest Dissertations Publishing
, ProQuest LLC, Ann Arbor, MI. https://orb.binghamton.edu/dissertation_and_theses/99/
32.
Goel
,
V. K.
,
Monroe
,
B. T.
,
Gilbertson
,
L. G.
, and
Brinckmann
,
P.
,
1995
, “
Interlaminar Shear Stresses and Laminae Separation in a Disc. Finite Element Analysis of the L3-L4 Motion Segment Subjected to Axial Compressive Loads
,”
Spine (Phila Pa 1976).
,
20
(
6
), pp.
689
698
.10.1097/00007632-199503150-00010
33.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
, Hoboken, NJ.
34.
Weiss
,
J. A.
,
1994
,
A Constitutive Model and Finite Element Representation for Transversely Isotropic Soft Tissues
,
The University of Utah
, Salt Lake City, UT.
35.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
,
1996
, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
,
135
(
1–2
), pp.
107
128
.10.1016/0045-7825(96)01035-3
36.
Brickley-Parsons
,
D.
, and
Glimcher
,
M. J.
,
1984
, “
Is the Chemistry of Collagen in Intervertebral Discs an Expression of Wolff's Law? A Study of the Human Lumbar Spine
,”
Spine (Phila Pa 1976)
,
9
(
2
), pp.
148
–1
63
.10.1097/00007632-198403000-00005
37.
Wang
,
S.
,
Park
,
W. M.
,
Gadikota
,
H. R.
,
Miao
,
J.
,
Kim
,
Y. H.
,
Wood
,
K. B.
, and
Li
,
G.
,
2013
, “
A Combined Numerical and Experimental Technique for Estimation of the Forces and Moments in the Lumbar Intervertebral Disc
,”
Comput. Methods Biomech. Biomed. Eng.
,
16
(
12
), pp.
1278
1286
.10.1080/10255842.2012.668537
38.
Li
,
G.
,
Wang
,
S.
,
Passias
,
P.
,
Xia
,
Q.
,
Li
,
G.
, and
Wood
,
K.
,
2009
, “
Segmental In Vivo Vertebral Motion During Functional Human Lumbar Spine Activities
,”
Eur. Spine J.
,
18
(
7
), pp.
1013
1021
.10.1007/s00586-009-0936-6
39.
Wilke
,
H. J.
,
Wenger
,
K.
, and
Claes
,
L.
,
1998
, “
Testing Criteria for Spinal Implants: Recommendations for the Standardization of In Vitro Stability Testing of Spinal Implants
,”
Eur. Spine J.
,
7
(
2
), pp.
148
154
.10.1007/s005860050045
40.
Duclos
,
S. E.
, and
Michalek
,
A. J.
,
2017
, “
Residual Strains in the Intervertebral Disc Annulus Fibrosus Suggest Complex Tissue Remodeling in Response to in-Vivo Loading
,”
J. Mech. Behav. Biomed. Mater.
,
68
, pp.
232
238
.10.1016/j.jmbbm.2017.02.010
41.
Yang
,
B.
, and
O'Connell
,
G. D.
,
2019
, “
Intervertebral Disc Swelling Maintains Strain Homeostasis Throughout the Annulus Fibrosus: A Finite Element Analysis of Healthy and Degenerated Discs
,”
Acta Biomater.
,
100
, pp.
61
74
.10.1016/j.actbio.2019.09.035
42.
Mimura
,
M.
,
Panjabi
,
M. M.
,
Oxland
,
T. R.
,
Crisco
,
J. J.
,
Yamamoto
,
I.
, and
Vasavada
,
A.
,
1994
, “
Disc Degeneration Affects the Multidirectional Flexibility of the Lumbar Spine
,”
Spine (Phila Pa 1976)
,
19
(
12
), pp.
1371
1380
.10.1097/00007632-199406000-00011
43.
McNally
,
D. S.
, and
Adams
,
M. A.
,
1992
, “
Internal Intervertebral Disc Mechanics as Revealed by Stress Profilometry
,”
Spine (Phila Pa 1976)
,
17
(
1
), pp.
66
73
.10.1097/00007632-199201000-00011
44.
Adams
,
M. A.
,
Lama
,
P.
,
Zehra
,
U.
, and
Dolan
,
P.
,
2015
, “
Why Do Some Intervertebral Discs Degenerate, When Others (in the Same Spine) Do Not?
,”
Clin. Anat.
,
28
(
2
), pp.
195
204
.10.1002/ca.22404
45.
Adams
,
M. A.
,
Freeman
,
B. J. C.
,
Morrison
,
H. P.
,
Nelson
,
I. W.
, and
Dolan
,
P.
,
2000
, “
Mechanical Initiation of Intervertebral Disc Degeneration
,”
Spine (Phila Pa 1976)
,
25
(
13
), pp.
1625
1636
.10.1097/00007632-200007010-00005
46.
Pfirrmann
,
C. W. A.
,
Metzdorf
,
A.
,
Zanetti
,
M.
,
Hodler
,
J.
, and
Boos
,
N.
,
2001
, “
Magnetic Resonance Classification of Lumbar Intervertebral Disc Degeneration
,”
Spine (Phila Pa 1976).
,
26
(
17
), pp.
1873
1878
.10.1097/00007632-200109010-00011
47.
Bezci
,
S. E.
,
Nandy
,
A.
, and
O'Connell
,
G. D.
,
2015
, “
Effect of Hydration on Healthy Intervertebral Disk Mechanical Stiffness
,”
ASME J. Biomech. Eng.
,
137
(
10
), p.
101007
.10.1115/1.4031416
48.
Malandrino
,
A.
,
Noailly
,
J.
, and
Lacroix
,
D.
,
2013
, “
Regional Annulus Fibre Orientations Used as a Tool for the Calibration of Lumbar Intervertebral Disc Finite Element Models
,”
Comput. Methods Biomech. Biomed. Eng.
,
5842
, pp.
37
41
.10.1080/10255842.2011.644539
49.
Weisse
,
B.
,
Aiyangar
,
A. K.
,
Affolter
,
C.
,
Gander
,
R.
,
Terrasi
,
G. P.
, and
Ploeg
,
H.
,
2012
, “
Determination of the Translational and Rotational Stiffnesses of an L4-L5 Functional Spinal Unit Using a Specimen-Specific Finite Element Model
,”
J. Mech. Behav. Biomed. Mater.
,
13
, pp.
45
61
.10.1016/j.jmbbm.2012.04.002
50.
Schmidt
,
H.
,
Heuer
,
F.
,
Drumm
,
J.
,
Klezl
,
Z.
,
Claes
,
L.
, and
Wilke
,
H. J.
,
2007
, “
Application of a Calibration Method Provides More Realistic Results for a Finite Element Model of a Lumbar Spinal Segment
,”
Clin. Biomech.
,
22
(
4
), pp.
377
384
.10.1016/j.clinbiomech.2006.11.008
51.
Yang
,
B.
, and
O'Connell
,
G. D.
,
2018
, “
GAG Content, Fiber Stiffness, and Fiber Angle Affect Swelling-Based Residual Stress in the Intact Annulus Fibrosus
,”
Biomech. Model. Mechanobiol.
, 18(3), pp.
617
630
.10.1007/s10237-018-1105-9
52.
Yang
,
B.
, and
O'Connell
,
G. D.
,
2018
, “
Swelling of Fiber-Reinforced Soft Tissues is Affected by Fiber Orientation, Fiber Stiffness, and Lamella Structure
,”
J. Mech. Behav. Biomed. Mater.
,
82
, pp.
320
328
.10.1016/j.jmbbm.2018.03.039
53.
Lai
,
W. M.
,
Hou
,
J. S.
, and
Mow
,
V. C.
,
1991
, “
A Triphasic Theory for the Swelling and Deformation Behaviors of Articular Cartilage
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
245
258
.10.1115/1.2894880
You do not currently have access to this content.