Abstract

Internal fixation with the use of locking plates is the standard surgical treatment for proximal humerus fractures, one of the most common fractures in the elderly. Screw cut-out through weak cancellous bone of the humeral head, which ultimately results in collapse of the fixed fracture, is the leading cause of failure and revision surgery. In an attempt to address this problem, surgeons often attach the plate with as many locking screws as possible into the proximal fragment. It is not thoroughly understood which screws and screw combinations play the most critical roles in fixation stability. This study conducted a detailed finite element analysis to evaluate critical parameters associated with screw cut-out failure. Several clinically relevant screw configurations and fracture gap sizes were modeled. Findings demonstrate that in perfectly reduced fracture cases, variation of the screw configurations had minor influence on mechanical stability of the fixation. The effects of screw configurations became substantial with the existence of a fracture gap. Interestingly, the use of a single anterior calcar screw was as effective as utilizing two screws to support the calcar. On the other hand, the variation in calcar screw configuration had minor influence on the fixation stability when all the proximal screws (A-D level) were filled. This study evaluates different screw configurations to further understand the influence of combined screw configurations and the individual screws on the fixation stability. Findings from this study may help decrease the risk for screw cut-out with proximal humerus varus collapse and the associated economic costs.

References

1.
Van Eck
,
C. F.
,
Klein
,
C. M.
,
Rahmi
,
H.
,
Scheidt
,
K. B.
,
Schultzel
,
M.
,
Lee
,
B. K.
, and
Itamura
,
J. M.
,
2019
, “
Morbidity, Mortality and Cost of Osteoporotic Fractures—should Proximal Humerus Fractures Be Taken as Seriously as Hip Fractures?
,”
Annals of Joint
, 4(3).10.21037/aoj.2019.01.01
2.
Jabran
,
A.
,
Peach
,
C.
,
Zou
,
Z.
, and
Ren
,
L.
,
2018
, “
Biomechanical Comparison of Screw-Based Zoning of PHILOS and Fx Proximal Humerus Plates
,”
BMC Musculoskelet. Disord.
,
19
(
253
), pp.
1
10
.10.1186/s12891-018-2185-5
3.
Fletcher
,
J. W. A.
,
Windolf
,
M.
,
Richards
,
R. G.
,
Gueorguiev
,
B.
, and
Varga
,
P.
,
2019
, “
Screw Configuration in Proximal Humerus Plating Has a Significant Impact on Fixation Failure Risk Predicted by Finite Element Models
,”
J. Shoulder Elbow Surg.
,
28
(
9
), pp. 1816–1823.10.1016/j.jse.2019.02.013
4.
Gardner
,
M. J.
,
Weil
,
Y.
,
Barker
,
J. U.
,
Kelly
,
B. T.
,
Helfet
,
D. L.
, and
Lorich
,
D. G.
,
2007
, “
The Importance of Medial Support in Locked Plating of Proximal Humerus Fractures
,”
J. Orthop. Trauma
,
21
(
3
), pp.
185
191
.10.1097/BOT.0b013e3180333094
5.
Ponce
,
B. A.
,
Thompson
,
K. J.
,
Raghava
,
P.
,
Eberhardt
,
A. W.
,
Tate
,
J. P.
,
Volgas
,
D. A.
, and
Stannard
,
J. P.
,
2013
, “
The Role of Medial Comminution and Calcar Restoration in Varus Collapse of Proximal Humeral Fractures Treated with Locking Plates
,”
J. Bone Jt. Surg.
,
95
(16):e113, pp.
1
7
.10.2106/JBJS.K.00202
6.
Inzana
,
J. A.
,
Varga
,
P.
, and
Windolf
,
M.
,
2016
, “
Implicit Modeling of Screw Threads for Efficient Finite Element Analysis of Complex Bone-Implant Systems
,”
J. Biomech.
,
49
(
9
), pp.
1836
1844
.10.1016/j.jbiomech.2016.04.021
7.
Varga
,
P.
,
Grünwald
,
L.
,
Inzana
,
J. A.
, and
Windolf
,
M.
,
2017
, “
Fatigue Failure of Plated Osteoporotic Proximal Humerus Fractures is Predicted by the Strain Around the Proximal Screws
,”
J. Mech. Behav. Biomed. Mater.
,
75
, pp.
68
74
.10.1016/j.jmbbm.2017.07.004
8.
Varga
,
P.
,
Inzana
,
J. A.
,
Gueorguiev
,
B.
,
Südkamp
,
N. P.
, and
Windolf
,
M.
,
2018
, “
Validated Computational Framework for Efficient Systematic Evaluation of Osteoporotic Fracture Fixation in the Proximal Humerus
,”
Med. Eng. Phys.
,
57
, pp.
29
39
.10.1016/j.medengphy.2018.04.011
9.
Bergmann
,
G.
,
Graichen
,
F.
,
Bender
,
A.
,
Kääb
,
M.
,
Rohlmann
,
A.
, and
Westerhoff
,
P.
,
2007
, “
In Vivo Glenohumeral Contact Forces-Measurements in the First Patient 7 Months Postoperatively
,”
J. Biomech.
,
40
(
10
), pp.
2139
2149
.10.1016/j.jbiomech.2006.10.037
10.
Ezquerro
,
F.
,
Jiménez
,
S.
,
Pérez
,
A.
,
Prado
,
M.
,
de Diego
,
G.
, and
Simón
,
A.
,
2007
, “
The Influence of Wire Positioning Upon the Initial Stability of Scaphoid Fractures Fixed Using Kirschner Wires
,”
Med. Eng. Phys.
,
29
(
6
), pp.
652
660
.10.1016/j.medengphy.2006.08.005
11.
Nedoma
,
J.
, and
Stehlik
,
J.
,
2011
,
Mathematical and Computational Methods in Biomechanics of Human Skeletal Systems
,
John Wiley & Sons
, Hoboken, NJ.
12.
Sawbones Worldwide
,
Test Materials and Composite Bones: Biomechanical Product Catalog
, Sawbones,
Vashan
,
WA
.
13.
Jabran
,
A.
,
Peach
,
C.
,
Zou
,
Z.
, and
Ren
,
L.
,
2019
, “
Parametric Design Optimisation of Proximal Humerus Plates Based on Finite Element Method
,”
Ann. Biomed. Eng.
,
47
(
2
), pp.
601
614
.10.1007/s10439-018-02160-6
14.
Hamandi
,
F.
,
Laughlin
,
R.
, and
Goswami
,
T.
,
2018
, “
Failure Analysis of PHILOS Plate Construct Used for Pantalar Arthrodesis Paper II—Screws and FEM Simulations
,”
Metals (Basel
),
8
(
4
).10.3390/met8040279
15.
Varga
,
P.
,
Grünwald
,
L.
, and
Windolf
,
M.
,
2018
, “
The Prediction of Cyclic Proximal Humerus Fracture Fixation Failure by Various Bone Density Measures
,”
J. Orthop. Res.
, pp.
1
9
.10.1002/jor.23879
16.
Goffin
,
J. M.
,
Pankaj
,
P.
, and
Simpson
,
A. H.
,
2014
, “
Are Plasticity Models Required to Predict Relative Risk of Lag Screw Cut-Out in Finite Element Models of Trochanteric Fracture Fixation?
,”
J. Biomech.
,
47
(
1
), pp.
323
328
.10.1016/j.jbiomech.2013.09.014
17.
Tilton
,
M.
,
Armstrong
,
A.
,
Sanville
,
J.
,
Chin
,
M.
,
Hast
,
M. W.
,
Lewis
,
G. S.
, and
Manogharan
,
G. P.
,
2019
, “
Biomechanical Testing of Additive Manufactured Proximal Humerus Fracture Fixation Plates
,”
Ann. Biomed. Eng.
,
48
, pp.
463
476
.10.1007/s10439-019-02365-3
18.
Keaveny
,
T. M.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
, and
Yeh
,
O. C.
,
2001
, “
Biomechanics of Trabecular Bone
,”
Annu. Rev. Biomed. Eng.
,
3
(
1
), pp.
307
333
.10.1146/annurev.bioeng.3.1.307
19.
Tingart
,
M. J.
,
Bouxsein
,
M. L.
,
Zurakowski
,
D.
,
Warner
,
J. P.
, and
Apreleva
,
M.
,
2003
, “
Three-Dimensional Distribution of Bone Density in the Proximal Humerus
,”
Calcif. Tissue Int.
,
73
(
6
), pp.
531
536
.10.1007/s00223-002-0013-9
20.
Gerber
,
C.
,
Werner
,
C. M. L.
, and
Vienne
,
P.
,
2004
, “
Internal Fixation of Complex Fractures of the Proximal Humerus
,”
J. Bone Jt. Surg. Ser. B
,
86
(
6
), pp.
848
855
.10.1302/0301-620X.86B6.14577
21.
Resch
,
H.
,
Povacz
,
P.
,
Fröhlich
,
R.
, and
Wambacher
,
M.
,
1997
, “
Percutaneous Fixation of Three- and Four- Part Fractures of the Proximal Humerus
,”
J. Bone Jt. Surg. Br.
,
79–B
(
2
), pp.
295
300
.10.1302/0301-620X.79B2.0790295
22.
Hepp
,
P.
,
Lill
,
H.
,
Bail
,
H.
,
Korner
,
J.
,
Niederhagen
,
M.
,
Haas
,
N. P.
,
Josten
,
C.
, and
Duda
,
G. N.
,
2003
, “
Where Should Implants Be Anchored in the Humeral Head?
,”
Clin. Orthop. Relat. Res.
,
415
(
415
), pp.
139
147
.10.1097/01.blo.0000092968.12414.a8
23.
Zhang
,
Y.
,
Wei
,
H.
,
Lin
,
K.
,
Chen
,
W.
,
Tsai
,
C.
, and
Lin
,
K.
,
2016
, “
Biomechanical Effect of the Configuration of Screw Hole Style on Locking Plate Fixation in Proximal Humerus Fracture With a Simulated Gap: A Finite Element Analysis
,”
Injury
,
47
(
6
), pp.
1191
1195
.10.1016/j.injury.2016.02.028
24.
Razfar
,
N.
,
Reeves
,
J. M.
,
Langohr
,
D. G.
,
Willing
,
R.
,
Athwal
,
G. S.
, and
Johnson
,
J. A.
,
2016
, “
Comparison of Proximal Humeral Bone Stresses Between Stemless, Short Stem, and Standard Stem Length: A Finite Element Analysis
,”
J. Shoulder Elbow Surg.
,
25
(
7
), pp.
1076
1083
.10.1016/j.jse.2015.11.011
25.
Maddah
,
M.
,
Prall
,
W. C.
,
Geyer
,
L.
,
Wirth
,
S.
,
Mutschler
,
W.
, and
Ockert
,
B.
,
2014
, “
Is Loss of Fixation Following Locked Plating of Proximal Humeral Fractures Related to the Number of Screws and Their Positions in the Humeral Head?
,”
Orthop. Rev.
,
6
(
2
), p.
5336
.10.4081/or.2014.5336
26.
Mehta
,
S.
,
Chin
,
M.
,
Sanville
,
J.
,
Namdari
,
S.
, and
Hast
,
M. W.
,
2018
, “
Calcar Screw Position in Proximal Humerus Fracture Fixation: Don't Miss High!
,”
Injury
,
49
(
3
), pp.
2
7
.10.1016/j.injury.2018.02.007
27.
Fletcher
,
J. W. A.
,
Windolf
,
M.
,
Richards
,
R. G.
,
Gueorguiev
,
B.
,
Buschbaum
,
J.
, and
Varga
,
P.
,
2019
, “
The Importance of Locking Plate Positioning in Proximal Humeral Fractures as Predicted by Computer Simulations
,”
J. Orthop. Res.
,
37
(
4
), pp.
957
964
.10.1002/jor.24235
You do not currently have access to this content.