Abstract

Two-dimensional (2D) or three-dimensional (3D) models of blood flow in stenosed arteries can be used to patient-specifically predict outcome metrics, thereby supporting the physicians in decision making processes. However, these models are time consuming which limits the feasibility of output uncertainty quantification (UQ). Accurate surrogates (metamodels) might be the solution. In this study, we aim to demonstrate the feasibility of a generalized polynomial chaos expansion-based metamodel to predict a clinically relevant output metric and to quantify the output uncertainty. As an example, a metamodel was constructed from a recently developed 2D model that was shown to be able to estimate translesional pressure drops in iliac artery stenoses (−0.9 ± 12.7 mmHg, R2 = 0.81). The metamodel was constructed from a virtual database using the adaptive generalized polynomial chaos expansion (agPCE) method. The constructed metamodel was then applied to 25 stenosed iliac arteries to predict the patient-specific pressure drop and to perform UQ. Comparing predicted pressure drops of the metamodel and in vivo measured pressure drops, the mean bias (−0.2 ± 13.7 mmHg) and the coefficient of determination (R2 = 0.80) were as good as of the original 2D computational fluid dynamics (CFD) model. UQ results of the 2D and metamodel were comparable. Estimation of the uncertainty interval using the original 2D model took 14 days, whereas the result of the metamodel was instantly available. In conclusion, it is feasible to quantify the uncertainty of the output metric and perform sensitivity analysis (SA) instantly using a metamodel. Future studies should investigate the possibility to construct a metamodel of more complex problems.

References

1.
Xiu
,
D.
, and
Sherwin
,
S. J.
,
2007
, “
Parametric Uncertainty Analysis of Pulse Wave Propagation in a Model of a Human Arterial Network
,”
J. Comput. Phys.
,
226
(
2
), pp.
1385
1407
.10.1016/j.jcp.2007.05.020
2.
Bode
,
A. S.
,
Huberts
,
W.
,
Bosboom
,
E. M.
,
Kroon
,
W.
,
van der Linden
,
W. P.
,
Planken
,
R. N.
,
van de Vosse
,
F. N.
, and
Tordoir
,
J. H.
,
2012
, “
Patient-Specific Computational Modeling of Upper Extremity Arteriovenous Fistula Creation: Its Feasibility to Support Clinical Decision-Making
,”
PLoS One
,
7
(
4
), p.
e34491
.10.1371/journal.pone.0034491
3.
Sankaran
,
S.
,
Kim
,
H. J.
,
Choi
,
G.
, and
Taylor
,
C. A.
,
2016
, “
Uncertainty Quantification in Coronary Blood Flow Simulations: Impact of Geometry, Boundary Conditions and Blood Viscosity
,”
J. Biomech.
,
49
(
12
), pp.
2540
2547
.10.1016/j.jbiomech.2016.01.002
4.
Schiavazzi
,
D. E.
,
Arbia
,
G.
,
Baker
,
C.
,
Hlavacek
,
A. M.
,
Hsia
,
T. Y.
,
Marsden
,
A. L.
, and
Vignon-Clementel
,
I. E.
, and
Modeling of Congenital Hearts Alliance (MOCHA) Investigators
,
2016
, “
Uncertainty Quantification in Virtual Surgery Hemodynamics Predictions for Single Ventricle Palliation
,”
Int. J. Numer. Method. Biomed. Eng.
,
32
(
3
), p.
e02737
.10.1002/cnm.2737
5.
Kleiber
,
M.
, and
Hien
,
T. D.
,
1992
,
The Stochastic Finite Element Method
(Basic Perturbation Technique and Computer Implementation),
Chichester, UK
.
6.
Kamiński
,
M.
,
2013
,
The Stochastic Perturbation Method for Computational Mechanics
,
Wiley,
Hoboken, NJ.
7.
Fishman
,
G. S.
,
1996
, "Monte Carlo: Concepts, Algorithms, and Applications"
Springer Series in Operations Research and Financial Engineering
, Springer, NY.
8.
Sudret
,
B.
,
2008
, “
Global Sensitivity Analysis Using Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
93
(
7
), pp.
964
979
.10.1016/j.ress.2007.04.002
9.
Xiu
,
D.
, and
Hesthaven
,
J.
,
2005
, “
High-Order Collocation Methods for Differential Equations With Random Inputs
,”
SIAM J. Sci. Comput.
,
27
(
3
), pp.
1118
1139
.10.1137/040615201
10.
Saltelli
,
A.
,
Tarantola
,
S.
, and
Chan
,
K. P.-S.
,
1999
, “
A Quantitative Model-Independent Method for Global Sensitivity Analysis of Model Output
,”
Technometrics
,
41
(
1
), pp.
39
56
.10.1080/00401706.1999.10485594
11.
Saltelli
,
A.
,
2002
, “
Making Best Use of Model Evaluations to Compute Sensitivity Indices
,”
Comput. Phys. Commun.
,
145
(
2
), pp. 280–297.10.1016/S0010-4655(02)00280-1
12.
Fang
,
K. T.
,
Li
,
R.
, and
Sudjianto
,
A.
,
2005
,
Design and Modeling for Computer Experiments
,
Chapman and Hall/CRC
.
13.
Sankaran
,
S.
, and
Marsden
,
A. L.
,
2011
, “
A Stochastic Collocation Method for Uncertainty Quantification and Propagation in Cardiovascular Simulations
,”
ASME J. Biomech. Eng.
,
133
(
3
), p.
031001
.10.1115/1.4003259
14.
Eck
,
V. G.
, Donders , W. P., Sturdy, J., Feinberg, J., Delhaas, T., Hellevik, L. R., and Huberts, W.,
2016
, “
A Guide to Uncertainty Quantification and Sensitivity Analysis for Cardiovascular Applications
,”
Int. J. Numer. Method. Biomed. Eng
,
32
(
8
), p. e02755.10.1002/cnm.2755
15.
Quicken
,
S.
, Donders, W. P., van Disseldorp, M. J. E., Gashi, K., Mees, B. M. E., van de Vosse, F. N., Lopata, R. G. P., Delhaas, T., and Huberts, W.,
2016
, “
Application of an Adaptive Polynomial Chaos Expansion on Computationally Expensive Three-Dimensional Cardiovascular Models for Uncertainty Quantification and Sensitivity Analysis
,”
ASME J. Biomech. Eng
,
138
(
12
), p. 121010.10.1115/1.4034709
16.
Blatman
,
G.
, and
Sudret
,
B.
,
2010
, “
An Adaptive Algorithm to Build Up Sparse Polynomial Chaos Expansions for Stochastic Finite Element Analysis
,”
Probab. Eng. Mech.
,
25
(
2
), pp.
183
197
.10.1016/j.probengmech.2009.10.003
17.
Heinen
,
S. G. H.
, van den Heuvel , D. A. F., Huberts, W., de Boer, S. W., van de Vosse, F. N., Delhaas, T., and de Vries, J. P. M.,
2017
, “
Vivo Validation of Patient-Specific Pressure Gradient Calculations for Iliac Artery Stenosis Severity Assessment
,”
J. Am. Heart Assoc.
,
6
(
12
), p.
e007328
.10.1161/JAHA.117.007328
18.
Gashi
,
K.
,
Bosboom
,
E. M. H.
, and
van de Vosse
,
F. N.
,
2019
, “
The Influence of Model Order Reduction on the Computed Fractional Flow Reserve Using Parameterized Coronary Geometries
,”
J. Biomech.
,
82
, pp.
313
323
.10.1016/j.jbiomech.2018.11.008
19.
White
,
F. M.
,
2011
,
Fluid Mechanics
,
McGraw-Hill Book Company
,
New York
.
20.
Sobol'
,
I. M.
,
1967
, “
On the Distribution of Points in a Cube and the Approximate Evaluation of Integrals
,”
USSR Comput. Math. Math. Phys.
,
7
, pp.
86
112
.10.1016/0041-5553(67)90144-9
21.
Blatman
,
G.
, and
Sudret
,
B.
,
2010
, “
Efficient Computation of Global Sensitivity Indices Using Sparse Polynomial Chaos Expansions
,”
Reliab. Eng. Syst. Saf.
,
95
(
11
), pp.
1216
1229
.10.1016/j.ress.2010.06.015
22.
Xiu
,
D.
, and
Em Karniadakis
,
G.
,
2002
, “
The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations
,”
SIAM J. Sci. Comput.
,
24
(
2
), pp.
619
644
.10.1137/S1064827501387826
23.
Klein
,
W. M.
,
van der Graaf
,
Y.
,
Seegers
,
J.
,
Spithoven
,
J. H.
,
Buskens
,
E.
,
van Baal
,
J. G.
,
Buth
,
J.
,
Moll
,
F. L.
,
Overtoom
,
T. T.
,
van Sambeek
,
M. R.
, and
Mali
,
W. P.
,
2006
, “
Dutch Iliac Stent Trial: Long-Term Results in Patients Randomized for Primary or Selective Stent Placement
,”
Radiology
,
238
(
2
), pp.
734
744
.10.1148/radiol.2382041053
24.
Newcombe
,
R. G.
,
1998
, “
Two-Sided Confidence Intervals for the Single Proportion: Comparison of Seven Methods
,”
Stat. Med.
,
17
(
8
), pp.
857
872
.10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-E
25.
Merkx
,
M. A. G.
,
Bescós
,
J. O.
,
Geerts
,
L.
,
Bosboom
,
E. M. H.
,
van de Vosse
,
F. N.
, and
Breeuwer
,
M.
,
2012
, “
Accuracy and Precision of Vessel Area Assessment: Manual Versus Automatic Lumen Delineation Based on Full-Width at Half-Maximum
,”
J. Magn. Reson. Imaging
,
36
(
5
), pp.
1186
1193
.10.1002/jmri.23752
26.
Lotz
,
J.
,
Meier
,
C.
,
Leppert
,
A.
, and
Galanski
,
M.
,
2002
, “
Cardiovascular Flow Measurement With Phase-Contrast MR Imaging: Basic Facts and Implementation
,”
Radiographics
,
22
(
3
), pp.
651
671
.10.1148/radiographics.22.3.g02ma11651
27.
McKay
,
M. D.
,
Beckman
,
R. J.
, and
Conover
,
W. J.
,
1979
, “
A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code
,”
Technometrics
,
21
, pp.
239
245
.10.2307/1268522
28.
Blatman
,
G.
,
2009
,
Adaptive Sparse Polynomial Chaos Expansions for Uncertainty Propagation and Sensitivity Analysis
,
Université Blaise Pascal
,
Clermont-Ferrand, France
.
29.
Norgren
,
L.
,
Hiatt
,
W. R.
,
Dormandy
,
J. A.
,
Nehler
,
M. R.
,
Harris
,
K. A.
, and
Fowkes
,
F.
,
2007
, “
Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II)
,”
J. Vasc. Surg.
,
45
(
1
), pp.
S5
S67
.10.1016/j.jvs.2006.12.037
30.
Pijls
,
N. H.
,
De Bruyne
,
B.
,
Peels
,
K.
,
Van Der Voort
,
P. H.
,
Bonnier
,
H. J.
,
Bartunek
,
J.
, and
Koolen
,
J. J.
,
1996
, “
Measurement of Fractional Flow Reserve to Assess the Functional Severity of Coronary-Artery Stenoses
,”
N. Engl. J. Med.
,
334
(
26
), pp.
1703
1708
.10.1056/NEJM199606273342604
31.
Pijls
,
N. H. J.
,
van Schaardenburgh
,
P.
,
Manoharan
,
G.
,
Boersma
,
E.
,
Bech
,
J.-W.
,
van't Veer
,
M.
,
Bär
,
F.
,
Hoorntje
,
J.
,
Koolen
,
J.
,
Wijns
,
W.
, and
de Bruyne
,
B.
,
2007
, “
Percutaneous Coronary Intervention of Functionally Nonsignificant Stenosis
,”
J. Am. Coll. Cardiol.
,
49
(
21
), pp.
2105
2111
.10.1016/j.jacc.2007.01.087
32.
Heinen
,
S. G.
,
de Boer
,
S. W.
,
van den Heuvel
,
D. A.
,
Huberts
,
W.
,
Dekker
,
P.
,
van de Vosse
,
F. N.
,
Delhaas
,
T.
, and
de Vries
,
J.-P.
,
2018
, “
Hemodynamic Significance Assessment of Equivocal Iliac Artery Stenoses by Comparing Duplex Ultrasonography With Intra-Arterial Pressure Measurements
,”
J. Cardiovasc. Surg. (Torino)
,
59
(
1
), pp.
37
44
.10.23736/S0021-9509.17.10186-2
33.
Legemate
,
D. A.
,
Teeuwen
,
C.
,
Hoeneveld
,
H.
, and
Eikelboom
,
B. C.
,
1991
, “
Value of Duplex Scanning Compared With Angiography and Pressure Measurement in the Assessment of Aortoiliac Arterial Lesions
,”
Br. J. Surg.
,
78
(
8
), pp.
1003
1008
.10.1002/bjs.1800780835
34.
Breslau
,
P. J.
,
Jörning
,
P. J.
, and
Greep
,
J. M.
,
1985
, “
Assessment of Aortoiliac Disease Using Hemodynamic Measures
,”
Arch. Surg.
,
120
(
9
), pp.
1050
1052
.10.1001/archsurg.1985.01390330060012
You do not currently have access to this content.