There is lack of investigation capturing the complex mechanical interaction of tissue-engineered intervertebral disk (IVD) constructs in physiologically relevant environmental conditions. In this study, mechanical characterization of anisotropic electrospinning (ES) substrates made of polycaprolactone (PCL) was carried out in wet and dry conditions and viability of human bone marrow derived mesenchymal stem cells (hMSCs) seeded within double layers of ES PCL were also studied. Cyclic compression of IVD-like constructs composed of an agarose core confined by ES PCL double layers was implemented using a bioreactor and the cellular response to the mechanical stimulation was evaluated. Tensile tests showed decrease of elastic modulus of ES PCL as the angle of stretching increased, and at 60 deg stretching angle in wet, the maximum ultimate tensile strength (UTS) was observed. Based on the configuration of IVD-like constructs, the calculated circumferential stress experienced by the ES PCL double layers was 40 times of the vertical compressive stress. Confined compression of IVD-like constructs at 5% and 10% displacement dramatically reduced cell viability, particularly at 10%, although cell presence in small and isolated area can still be observed after mechanical conditioning. Hence, material mechanical properties of tissue-engineered scaffolds, composed of fibril structure of polymer with low melting point, are affected by the testing condition. Circumferential stress induced by axial compressive stimulation, conveyed to the ES PCL double layer wrapped around an agarose core, can affect the viability of cells seeded at the interface, depending on the mechanical configuration and magnitude of the load.

References

References
1.
Naderi
,
H.
,
Matin
,
M. M.
, and
Bahrami
,
A. R.
,
2011
, “
Review Paper: Critical Issues in Tissue Engineering: Biomaterials, Cell Sources, Angiogenesis, and Drug Delivery Systems
,”
J. Biomater. Appl.
,
26
(
4
), pp.
383
417
.
2.
Guterl
,
C. C.
,
See
,
E. Y.
,
Blanquer
,
S. B.
,
Pandit
,
A.
,
Ferguson
,
S. J.
,
Benneker
,
L. M.
,
Grijpma
,
D. W.
,
Sakai
,
D.
,
Eglin
,
D.
,
Alini
,
M.
,
Iatridis
,
J. C.
, and
Grad
,
S.
,
2013
, “
Challenges and Strategies in the Repair of Ruptured Annulus Fibrosus
,”
Eur. Cells Mater.
,
25
, pp.
1
21
.
3.
Long
,
R. G.
,
Torre
,
O. M.
,
Hom
,
W. W.
,
Assael
,
D. J.
, and
Iatridis
,
J. C.
,
2016
, “
Design Requirements for Annulus Fibrosus Repair: Review of Forces, Displacements, and Material Properties of the Intervertebral Disk and a Summary of Candidate Hydrogels for Repair
,”
ASME J. Biomech. Eng.
,
138
(
2
), pp.
1
14
.
4.
Tan
,
Z.
,
Wang
,
H.
,
Gao
,
X.
,
Liu
,
T.
, and
Tan
,
Y.
,
2016
, “
Composite Vascular Grafts With High Cell Infiltration by Co-Electrospinning
,”
Mater. Sci. Eng., C
,
67
, pp.
369
377
.
5.
Croisier
,
F.
,
Duwez
,
A.-S.
,
Jérôme
,
C.
,
Léonard
,
A. F.
,
van der Werf
,
K. O.
,
Dijkstra
,
P. J.
, and
Bennink
,
M. L.
,
2012
, “
Mechanical Testing of Electrospun PCL Fibers
,”
Acta Biomater.
,
8
(
1
), pp.
218
224
.
6.
Duling
,
R. R.
,
Dupaix
,
R. B.
,
Katsube
,
N.
, and
Lannutti
,
J.
,
2008
, “
Mechanical Characterization of Electrospun Polycaprolactone (PCL): A Potential Scaffold for Tissue Engineering
,”
ASME J. Biomech. Eng.
,
130
(
1
), p.
011006
.
7.
Ryan
,
G. L.
,
Watanabe
,
N.
, and
Vavylonis
,
D.
,
2012
, “
A Review of Models of Fluctuating Protrusion and Retraction Patterns at the Leading Edge of Motile Cells
,”
Cytoskeleton
,
69
(
4
), pp.
195
206
.
8.
Kim
,
G. H.
,
2008
, “
Electrospun PCL Nanofibers With Anisotropic Mechanical Properties as a Biomedical Scaffold
,”
Biomed. Mater.
,
3
(
2
), pp.
1
8
.
9.
Nerurkar
,
N. L.
,
Elliott
,
D. M.
, and
Mauck
,
R. L.
,
2007
, “
Mechanics of Oriented Electrospun Nanofibrous Scaffolds for Annulus Fibrosus Tissue Engineering
,”
J. Orthop.
,
25
(
8
), pp.
1018
1028
.
10.
Nerurkar
,
N. L.
,
Baker
,
B. M.
,
Sen
,
S.
,
Wible
,
E. E.
,
Elliott
,
D. M.
, and
Mauck
,
R. L.
,
2009
, “
Nanofibrous Biologic Laminates Replicate the Form and Function of the Annulus Fibrosus
,”
Nat. Mater.
,
8
(
12
), pp.
986
992
.
11.
Nerurkar
,
N. L.
,
Sen
,
S.
,
Huang
,
A. H.
,
Elliott
,
D. M.
, and
Mauck
,
R. L.
,
2010
, “
Engineered Disc-Like Angle-Ply Structures for Intervertebral Disc Replacement
,”
Spine
,
35
(
8
), pp.
867
873
.
12.
Liu
,
C.
,
Zhu
,
C.
,
Li
,
J.
,
Zhou
,
P.
,
Chen
,
M.
,
Yang
,
H.
, and
Li
,
B.
,
2015
, “
The Effect of the Fibre Orientation of Electrospun Scaffolds on the Matrix Production of Rabbit Annulus Fibrosus-Derived Stem Cells
,”
Bone Res.
,
3
(
1
), p. 15012.
13.
Martin
,
J. T.
,
Milby
,
A. H.
,
Chiaro
,
J. A.
,
Kim
,
D. H.
,
Hebela
,
N. M.
,
Smith
,
L. J.
,
Elliott
,
D. M.
, and
Mauck
,
R. L.
,
2014
, “
Translation of an Engineered Nanofibrous Disc-Like Angle-Ply Structure for Intervertebral Disc Replacement in a Small Animal Model
,”
Acta Biomater.
,
10
(
6
), pp.
2473
2481
.
14.
Fotticchia
,
A.
,
Liu
,
Y.
,
Demirci
,
E.
, and
Lenardi
,
C.
,
2013
, “
Electrospun Polycaprolactone Nano-Fibers Support Growth of Human Mesenchymal Stem Cells
,”
13th IEEE International Conference on Nanotechnology
(
IEEE-NANO
), Beijing, China, Aug. 5–8, pp.
158
161
.
15.
Demirci
,
E.
,
Acar
,
M.
,
Pourdeyhimi
,
B.
, and
Silberschmidt
,
V. V.
,
2011
, “
Computation of Mechanical Anisotropy in Thermally Bonded Bicomponent Fibre Nonwovens
,”
Comput. Mater. Sci.
,
52
(1), pp.
157
163
.
16.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C. A. J.
,
Feigl
,
G.
, and
Regitnig
,
P.
,
2005
, “
Single Lamellar Mechanics of the Human Lumbar Anulus Fibrosus
,”
Biomech. Model. Mechanobiol.
,
3
(
3
), pp.
125
140
.
17.
Isaacs
,
J. L.
,
Vresilovic
,
E.
,
Sarkar
,
S.
, and
Marcolongo
,
M.
,
2014
, “
Role of Biomolecules on Annulus Fibrosus Micromechanics: Effect of Enzymatic Digestion on Elastic and Failure Properties
,”
J. Mech. Behav. Biomed. Mater.
,
40
, pp.
75
84
.
18.
Lazebnik
,
M.
,
Singh
,
M.
,
Glatt
,
P.
,
Friis
,
L. A.
,
Berkland
,
C. J.
, and
Detamore
,
M. S.
,
2011
, “
Biomimetic Method for Combining the Nucleus Pulposus and Annulus Fibrosus for Intervertebral Disc Tissue Engineering
,”
J. Tissue Eng. Regener. Med.
,
5
(
8
), pp.
179
187
.
19.
Driscoll
,
T. P.
,
Nerurkar
,
N. L.
,
Jacobs
,
N. T.
,
Elliott
,
D. M.
, and
Mauck
,
R. L.
,
2011
, “
Fiber Angle and Aspect Ratio Influence the Shear Mechanics of Oriented Electrospun Nanofibrous Scaffolds
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
1627
1636
.
20.
Baker
,
S. R.
,
Banerjee
,
S.
,
Bonin
,
K.
, and
Guthold
,
M.
,
2016
, “
Determining the Mechanical Properties of Electrospun Poly-Epsilon-Caprolactone (PCL) Nanofibers Using AFM and a Novel Fiber Anchoring Technique
,”
Mater. Sci. Eng., C
,
59
, pp.
203
212
.
21.
Vergari
,
C.
,
Mansfield
,
J.
,
Meakin
,
J. R.
, and
Winlove
,
P. C.
,
2016
, “
Lamellar and Fibre Bundle Mechanics of the Annulus Fibrosus in Bovine Intervertebral Disc
,”
Acta Biomater.
,
37
, pp.
14
20
.
22.
Paul
,
C. P. L.
,
Schoorl
,
T.
,
Zuiderbaan
,
H. A.
,
Doulabi
,
B. Z.
,
van der Veen
,
A. J.
,
van de Ven
,
P. M.
,
Smit
,
T. H.
,
van Royen
,
B. J.
,
Helder
,
M. N.
, and
Mullender
,
M. G.
,
2013
, “
Dynamic and Static Overloading Induce Early Degenerative Processes in Caprine Lumbar Intervertebral Discs
,”
PLoS One
,
8
(
4
), p.
e62411
.
23.
Maclean
,
J. J.
,
Lee
,
C. R.
,
Alini
,
M.
, and
Iatridis
,
J. C.
,
2004
, “
Anabolic and Catabolic mRNA Levels of the Intervertebral Disc Vary With the Magnitude and Frequency of In Vivo Dynamic Compression
,”
J. Orthop. Res.
,
22
(
6
), pp.
1193
1200
.
24.
Lotz
,
J. C.
, and
Chin
,
J. R.
,
2000
, “
Intervertebral Disc Cell Death is Dependent on the Magnitude and Duration of Spinal Loading
,”
Spine
,
25
(
12
), pp.
1477
1483
.
25.
See
,
E. Y.-S.
,
Toh
,
S. L.
, and
Goh
,
J. C. H.
,
2011
, “
Effects of Radial Compression on a Novel Simulated Intervertebral Disc–Like Assembly Using Bone Marrow–Derived Mesenchymal Stem Cell Cell-Sheets for Annulus Fibrosus Regeneration
,”
Spine
,
36
(
21
), pp.
1744
1751
.
26.
Gregory
,
D. E.
,
Bae
,
W. C.
,
Sah
,
R. L.
, and
Masuda
,
K.
,
2012
, “
Anular Delamination Strength of Human Lumbar Intervertebral Disc
,”
Eur. Spine J.
,
21
(
9
), pp.
1716
1723
.
27.
Yang
,
H.
,
Jekir
,
M. G.
,
Davis
,
M. W.
, and
Keaveny
,
T. M.
,
2016
, “
Effective Modulus of the Human Intervertebral Disc and Its Effect on Vertebral Bone Stress
,”
J. Biomech.
,
49
(
7
), pp.
1134
1140
.
28.
Klisch
,
S. M.
, and
Lotz
,
J. C.
,
2000
, “
A Special Theory of Biphasic Mixtures and Experimental Results for Human Annulus Fibrosus Tested in Confined Compression
,”
ASME J. Biomech. Eng.
,
122
(
2
), pp.
180
188
.
29.
Yu
,
J.
,
Schollum
,
M. L.
,
Wade
,
K. R.
,
Broom
,
N. D.
, and
Urban
,
J. P. G.
,
2015
, “
ISSLS Prize Winner: A Detailed Examination of the Elastic Network Leads to a New Understanding of Annulus Fibrosus Organization
,”
Spine
,
40
(
15
), pp.
1149
1157
.
You do not currently have access to this content.