Advanced computational human body models (HBM) enabling enhanced safety require verification and validation at different levels or scales. Specifically, the motion segments, which are the building blocks of a detailed neck model, must be validated with representative experimental data to have confidence in segment and, ultimately, full neck model response. In this study, we introduce detailed finite element motion segment models and assess the models for quasi-static and dynamic loading scenarios. Finite element segment models at all levels in the lower human cervical spine were developed from scans of a 26-yr old male subject. Material properties were derived from the in vitro experimental data. The segment models were simulated in quasi-static loading in flexion, extension, lateral bending and axial rotation, and at dynamic rates in flexion and extension in comparison to previous experimental studies and new dynamic experimental data introduced in this study. Single-valued experimental data did not provide adequate information to assess the model biofidelity, while application of traditional corridor methods highlighted that data sets with higher variability could lead to an incorrect conclusion of improved model biofidelity. Data sets with continuous or multiple moment–rotation measurements enabled the use of cross-correlation for an objective assessment of the model and highlighted the importance of assessing all motion segments of the lower cervical spine to evaluate the model biofidelity. The presented new segment models of the lower cervical spine, assessed for range of motion and dynamic/traumatic loading scenarios, provide a foundation to construct a biofidelic model of the spine and neck, which can be used to understand and mitigate injury for improved human safety in the future.

References

1.
Bean
,
J. D.
,
Kahane
,
C. J.
, and
Mynatt
,
M.
,
2009
, “
Fatalities in Frontal Crashes Despite Seat Belts and Air Bags—Review of all NASS/CDS Cases—Model and Calendar Years 2000–2007
,” National Highway Traffic Safety Administration, Washington, DC, Report No.
DOT HS 811 202
.
2.
Hallman
,
J. J.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
, and
Maiman
,
D. J.
,
2011
, “
Injury Differences Between Small and Large Overlap Frontal Crashes
,”
Ann. Adv. Automot. Med.
,
55
, pp.
147
157
.
3.
Forman
,
J. L.
,
Lopez-Valdes
,
F.
,
Lessley
,
D. J.
,
Riley
,
P.
,
Sochor
,
M.
,
Heltzel
,
S.
,
Ash
,
J.
,
Perz
,
R.
,
Kent
,
R. W.
,
Seacrist
,
T.
,
Arbogast
,
K. B.
,
Tanji
,
H.
, and
Higuichi
,
K.
,
2013
, “
Occupant Kinematics and Shoulder Belt Retention in Far-Side Lateral and Oblique Collisions: A Parametric Study
,”
57th Stapp Car Crash Conference Proceedings
, Orlando, FL, Nov. 11–13, Vol.
57
, pp.
343
385
.
4.
Fice
,
J. B.
,
Cronin
,
D. S.
, and
Panzer
,
M. B.
,
2011
, “
Cervical Spine Model to Predict Capsular Ligament Response in Rear Impact
,”
Ann Biomed. Eng.
,
39
(
8
), pp.
2152
2162
.
5.
Gaewsky
,
J. P.
,
Weaver
,
A. A.
,
Koya
,
B.
, and
Stitzel
,
J. D.
,
2015
, “
Driver Injury Risk Variability in Finite Element Reconstructions of Crash Injury Research and Engineering Network (CIREN) Frontal Motor Vehicle Crashes
,”
Traffic Injury Prev.
,
16
(sup2), pp.
S124
S131
.
6.
Danelson
,
K. A.
,
Golman
,
A. J.
,
Kemper
,
A. R.
,
Gayzik
,
F. S.
,
Gabler
,
H. C.
,
Duma
,
S. M.
, and
Stitzel
,
J. D.
,
2015
, “
Finite Element Comparison of Human and Hybrid III Responses in a Frontal Impact
,”
Accid. Anal. Prev.
,
85
, pp.
125
156
.
7.
Panzer
,
M. B.
, and
Cronin
,
D. S.
,
2009
, “
C4-C5 Segment Finite Element Model Development, Validation and Load-Sharing Investigation
,”
J. Biomech.
,
42
(
4
), pp.
480
490
.
8.
DeWit
,
J. A.
, and
Cronin
,
D. S.
,
2012
, “
Cervical Spine Segment Finite Element Model for Traumatic Injury Prediction
,”
J. Mech. Behav. Biomed. Mater.
,
10
, pp.
138
150
.
9.
Yoganandan
,
N.
,
Kumaresan
,
S.
,
Voo
,
L.
, and
Pintar
,
F. A.
,
1996
, “
Finite Element Applications in Cervical Spine Modeling
,”
Spine
,
21
(
15
), pp.
1824
1834
.
10.
Clausen
,
J. D.
,
Goel
,
V. K.
,
Traynelis
,
V. C.
, and
Scifert
,
J.
,
1997
, “
Unicinate Process and Luschka Joints Influence the Biomechanics of the Cervical Spine: Quantification Using a Finite Element Model of the C5-C6 Segment
,”
J. Orthop. Res.
,
15
(
3
), pp.
342
347
.
11.
Teo
,
E. C.
, and
Ng
,
H. W.
,
2001
, “
Evaluation of the Role of Ligaments, Facets and Disc Nucleus in Lower Cervical Spine Under Compression and Sagittal Moments Using Finite Element Method
,”
Med. Eng. Phys.
,
23
(
3
), pp.
155
164
.
12.
Natarajan
,
R. N.
,
Chen
,
B. H.
,
An
,
H. S.
, and
Andersson
,
G. B. J.
,
2000
, “
Anterior Cervical Fusion: A Finite Element Model Study on Motion Segment Stability Including the Effect of Osteoporosis
,”
Spine
,
25
(
8
), pp.
955
961
.
13.
Cronin
,
D. S.
,
Singh
,
D.
,
Barker
,
J.
, and
Fice
,
J.
,
2014
, “
Detailed Finite Element Cervical Spine Model Response Evaluation
,” World Congress of Biomechanics (WCB), Boston, MA, July 10–16.
14.
Del Palomar
,
A. P.
,
Calvo
,
B.
, and
Doblare
,
M.
,
2008
, “
An Accurate Finite Element Model of the Cervical Spine Under Quasi-Static Loading
,”
J. Biomech.
,
41
(
3
), pp.
523
531
.
15.
Wheeldon
,
J. A.
,
Stemper
,
B. D.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
2008
, “
Validation of a Finite Element Model of the Young Normal Lower Cervical Spine
,”
Ann. Biomed. Eng.
,
36
(
9
), pp.
1458
1469
.
16.
Kallemeyn
,
N.
,
Gandhi
,
A.
,
Kode
,
S.
,
Shivanna
,
K.
,
Smucker
,
J.
, and
Grosland
,
N.
,
2010
, “
Validation of a C2-C7 Cervical Spine Finite Element Model Using Specimen-Specific Flexibility Data
,”
Med. Eng. Phys.
,
32
(
5
), pp.
482
489
.
17.
Panzer
,
M. B.
,
Fice
,
J. B.
, and
Cronin
,
D. S.
,
2011
, “
Cervical Spine Response in Frontal Crash
,”
Med. Eng. Phys.
,
33
(
9
), pp.
1147
1159
.
18.
Erbulut
,
D. U.
,
Zafarparandeh
,
I.
,
Lazoglu
,
I.
, and
Ozer
,
A. F.
,
2014
, “
Application of an Asymmetric Finite Element Model of the C2-T1 Cervical Spine for Evaluation the Role of Soft Tissues in Stability
,”
Med. Eng. Phys.
,
36
(
7
), pp.
915
921
.
19.
Gehre
,
C.
,
Gades
,
H.
, and
Wernicke
,
P.
,
2009
, “
Objective Rating of Signals Using Test and Simulation Response
,”
International Technical Conference on the Enhanced Safety of Vehicles
(
ESV
), Stuttgart, Germany, June 15–18.
20.
Barker
,
J. B.
,
Cronin
,
D. S.
, and
Chandrashekar
,
N.
,
2014
, “
High Rotation Rate Behaviour of Cervical Spine Segment in Flexion and Extension
,”
ASME J. Biomech. Eng.
,
136
(
12
), p.
121004
.
21.
Vavalle
,
N. A.
,
Jelen
,
B. C.
,
Moreno
,
D. P.
,
Stitzel
,
J. D.
, and
Gayzik
,
F. S.
,
2013
, “
An Evaluation of Objective Rating Methods for Full-Body Finite Element Model Comparison to PMHS Tests
,”
Traffic Injury Prev.
,
14
(sup1), pp.
S87
S94
.
22.
Miller
,
L. E.
,
Urban
,
J. E.
, and
Stitzel
,
J. D.
,
2016
, “
Development and Validation of an Atlas-Based Finite Element Brain Model
,”
Biomech. Model. Mechanobiol.
,
15
(
5
), pp.
1201
1214
.
23.
Park
,
G.
,
Kim
,
T.
,
Crandall
,
J. R.
,
Dalmases
,
C. A.
, and
Narro
,
L.
,
2013
, “
Comparison of Kinematics of GHBMC to PMHS on the Side Impact Condition
,” International Research Council on Biomechanics of Injury (
IRCOBI
), Gothenburg, Sweden, Sept. 11–13, pp.
368
379
.
24.
Wheeldon
,
J. A.
,
Pintar
,
F. A.
,
Knowles
,
S.
, and
Yoganandan
,
N.
,
2006
, “
Experimental Flexion/Extension Data Corridors for Validation of Finite Element Models of the Young, Normal Cervical Spine
,”
J. Biomech.
,
39
(
2
), pp.
375
380
.
25.
Nightingale
,
R. W.
,
Winkelstein
,
B. A.
,
Knaub
,
K. E.
,
Richardson
,
W. J.
,
Luck
,
J. F.
, and
Myers
,
B. S.
,
2002
, “
Comparative Strengths and Structural Properties of the Upper and Lower Cervical Spine in Flexion and Extension
,”
J. Biomech.
,
35
(
6
), pp.
725
732
.
26.
Nightingale
,
R. W.
,
Carol Chancey
,
V.
,
Ottaviano
,
D.
,
Luck
,
J. F.
,
Tran
,
L.
,
Prange
,
M.
, and
Myers
,
B. S.
,
2007
, “
Flexion and Extension Structural Properties and Strengths for Male Cervical Spine Segments
,”
J. Biomech.
,
40
(
3
), pp.
535
542
.
27.
Camacho
,
D. L. A.
,
Nightingale
,
R. W.
,
Robinette
,
J. J.
,
Vanguri
,
S. K.
,
Coates
,
D. J.
, and
Myers
,
B. S.
,
1997
, “
Experimental Flexibility Measurements for the Development of a Computational Head-Neck Model Validated for Near-Vertex Head Impact
,”
SAE
Paper No. 973345.
28.
Moroney
,
S. P.
,
Schultz
,
A. B.
,
Miller
,
J. A. A.
, and
Andersson
,
G. B. J.
,
1988
, “
Load-Displacement Properties of Lower Cervical Spine Motion Segments
,”
J. Biomech.
,
21
(
9
), pp.
769
779
.
29.
Panjabi
,
M. M.
,
Crisco
,
J. J.
,
Vasavada
,
A.
,
Oda
,
T.
,
Cholewicki
,
J.
,
Nibu
,
K.
, and
Shin
,
E.
,
2001
, “
Mechanical Properties of the Human Cervical Spine as Shown by Three-Dimensional Load-Displacement Curves
,”
Spine
,
26
(
24
), pp.
2692
2700
.
30.
Gayzik
,
F. S.
,
Moreno
,
D. M.
,
Geer
,
C. P.
,
Wuertzer
,
S. D.
,
Martin
,
R. S.
, and
Stitzel
,
J. D.
,
2011
, “
Development of a Full Body CAD Dataset for Computational Modeling: A Multi-Modality Approach
,”
Ann. Biomed. Eng.
,
39
(
10
), pp.
2568
2583
.
31.
Hallquist
,
J. O.
,
2016
, “
LS-DYNA Keyword Users' Manual Volume I Version R8.0
,” Livermore Software Technology, Livermore, CA.
32.
Gilad
,
I.
, and
Nissan
,
M.
,
1985
, “
Sagittal Evaluation of Elemental Geometrical Dimensions of Human Vertebrae
,”
J. Anat.
,
143
, pp.
115
120
.
33.
Pooni
,
J. S.
,
Hukins
,
D. W.
,
Harris
,
P. F.
,
Hilton
,
R. C.
, and
Davies
,
K. E.
,
1986
, “
Comparison of the Structure of Human Intervertebral Discs in the Cervical, Thoracic and Lumbar Regions of the Spine
,”
Surg. Radiol. Anat.
,
8
(
3
), pp.
175
182
.
34.
Reilly
,
D. T.
,
Burstein
,
A. H.
, and
Frankel
,
V. H.
,
1974
, “
The Elastic Modulus for Bone
,”
J. Biomech.
,
7
(
3
), pp.
271
275
.
35.
McElhaney
,
J. H.
,
1966
, “
Dynamic Response of Bone and Muscle Tissue
,”
J. Appl. Physiol.
,
21
(4), pp.
1231
1236
.
36.
Keaveny
,
T. M.
,
Morgan
,
E. F.
,
Niebur
,
G. L.
, and
Yeh
,
O. C.
,
2001
, “
Biomechanics of Trabecular Bone
,”
Ann. Rev. Biomed. Eng.
,
3
(
1
), pp.
307
333
.
37.
Lindahl
,
O.
,
1976
, “
Mechanical Properties of Dried Defatted Spongy Bone
,”
Acta Orthop. Scand.
,
47
(
1
), pp.
11
19
.
38.
Denozier, G., and Ku, D. N., 2006, “Biomechanical Comparison between Fusion of Two Vertebrae and Implantation of an Artificial Intervertebral Disc,”
J. Biomech.
,
39
(4), pp. 766–775.
39.
DiSilvestro, M. R., and Suh, J. K. F., 2001, “A Cross-Validation of the Biphasic Poroviscoelastic Model of Articular Cartilage in Unconfined Compression, Indentation, and Confined Compression,”
J. Biomech.
,
34
(4), pp. 519–525.
40.
Yang
,
K. H.
, and
Kish
,
V. L.
,
1988
, “
Compressibility Measurement of Human Intervertebral Nucleus Pulposus
,”
J. Biomech.
,
21
(
10
), p.
865
.
41.
Fujita
,
Y.
,
Duncan
,
N. A.
, and
Lotz
,
J. C.
,
1997
, “
Radial Tensile Properties of the Lumbar Annulus Fibrosus are Site and Degeneration Dependent
,”
J. Orthop. Res.
,
15
(
6
), pp.
814
819
.
42.
Skaggs
,
D. L.
,
Weidenbaum
,
M.
,
Iatridis
,
J. C.
,
Ratcliffe
,
A.
, and
Mow
,
V. C.
,
1994
, “
Regional Variation in Tensile Properties and Biochemical Composition of the Human Lumbar Annulus Fibrosus
,”
Spine
,
19
(
12
), pp.
1310
1319
.
43.
Ebara
,
S.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
,
1996
, “
Tensile Properties of Nondegenerate Human Lumbar Anulus Fibrosus
,”
Spine
,
21
(
4
), pp.
452
461
.
44.
Holzapfel
,
G. A.
,
Schulze-Bauer
,
C. A.
,
Feigl
,
G.
, and
Regitnig
,
P.
,
2005
, “
Single Lamellar Mechanics of the Human Lumbar Annulus Fibrosus
,”
Biomech. Modell. Mechanobiol.
,
3
(
3
), pp.
125
140
.
45.
Mattucci
,
S. F. E.
,
Moulton
,
J. A.
,
Chandrashekar
,
N.
, and
Cronin
,
D. S.
,
2012
, “
Strain Rate Dependent Properties of Younger Human Cervical Spine Ligaments
,”
J. Mech. Behav. Biomed. Mater.
,
10
, pp.
216
226
.
46.
Mattucci
,
S. F. E.
, and
Cronin
,
D. S.
,
2015
, “
A Method to Characterize Average Cervical Spine Ligament Response Based on Raw Data Sets for Implementation Into Injury Biomechanics Models
,”
J. Mech. Behav. Biomed. Mater.
,
41
, pp.
251
260
.
47.
Hallquist
,
J. O.
,
2016
, “
LS-DYNA Keyword Users' Manual Volume 2 Version R8.0
,” Livermore Software Technology, Livermore, CA.
48.
Acaraglu
,
E. R.
,
Iatridis
,
J. C.
,
Setton
,
L. A.
,
Foster
,
R. J.
,
Mow
,
V. C.
, and
Weidenbaum
,
M.
,
1995
, “
Degeneration and Aging Affect the Tensile Behavior of Human Lumbar Anulus Fibrosus
,”
Spine
,
20
(
14
), pp.
2690
2701
.
49.
Kasra
,
M.
,
Parnianpour
,
M.
,
Shirazi-Ald
,
A.
,
Wang
,
J. L.
, and
Grynpas
,
M. D.
,
2004
, “
Effect of Strain Rate on Tensile Properties of Sheep Disc Anulus Fibrosus
,”
Technol. Health Care
,
12
(
4
), pp.
333
342
.
50.
Cesari
,
D.
,
Compigne
,
S.
,
Scherer
,
R.
,
Xu
,
L.
,
Takahasi
,
N.
,
Page
,
M.
,
Asakawa
,
K.
,
Hautmann
,
E.
,
Bortenschlager
,
K.
,
Sakurai
,
M.
, and
Harigae
,
T.
,
2001
, “
WorldSID Prototype Dummy Biomechanical Responses
,”
45th Stapp Car Crash Conference Proceedings
, San Antonio, TX, Vol.
45
, pp.
285
318
.
51.
Kumaresan
,
S.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
1999
, “
Finite Element Analysis of the Cervical Spine: A Material Property Sensitivity Study
,”
Clin. Biomech.
,
14
(
1
), pp.
41
53
.
52.
Mustafy
,
T.
,
El-Rich
,
M.
,
Mesfar
,
W.
, and
Moglo
,
K.
,
2014
, “
Investigation of Impact Loading Rate Effects on the Ligamentous Cervical Spinal Load-Partitioning Using Finite Element Model of Functional Spine Unit C2-C3
,”
J. Biomech.
,
47
(
12
), pp.
2891
2903
.
53.
De Santis Klinich
,
K.
,
Ebert
,
S. M.
,
Van Ee
,
C. A.
,
Flannagan
,
C. A. C.
,
Prasad
,
M.
,
Reed
,
M. P.
, and
Schneider
,
L. W.
,
2004
, “
Cervical Spine Geometry in the Automotive Seated Posture: Variations With Age, Stature, and Gender
,”
Stapp Car Crash J.
,
48
, pp.
301
330
.
54.
Reed
,
M. P.
,
Manary
,
M. A.
,
Flannagan
,
C. A. C.
, and
Schneider
,
L. W.
,
2002
, “
A Statistical Method for Predicting Automobile Driving Posture
,”
Hum. Factors
,
44
(
4
), pp.
557
568
.
55.
Gilad
,
I.
, and
Nissan
,
M.
,
1986
, “
A Study of Vertebra and Disc Geometric Relations of the Human Cervical and Lumbar Spine
,”
Spine
,
11
(
2
), pp.
154
157
.
You do not currently have access to this content.