The human lung is known to be asymmetric and heterogeneous which leads to an inhomogeneous distribution of air. Within the scope of this paper the influence of the upper airway tree geometry on ventilation distribution and the differences between conventional mechanical ventilation (CMV) and high frequency oscillatory ventilation (HFOV) will be analyzed. The comparison is carried out under the assumption of positive pressure ventilation. Thereby, the mechanics of lung tissue is expected to play a minor role. Oscillatory flow is therefore generated numerically at a 3D model geometry of the upper human airways. For large enough frequencies in the range of HFOV (here 7 Hz) the shape of the velocity profiles changes, but this had no measurable influence on the flow distribution. The flow division is rather governed by airway tree geometry, i.e., branch length, curvature, and tortuosity. A convective net transport of fresh air to the distal branches occurs due to the relocation of mass during ins-/expiration driven by secondary flow. However, a mixing by secondary flow plays a minor role as was suggested by the visualization of particle pathlines. The phenomenon of steady streaming is further investigated by calculating the mean flow of one breathing cycle. Streaming was found to contribute only to a minor percentage to the overall mass transport in the upper lung airways.
Skip Nav Destination
Article navigation
August 2015
Research-Article
The Influence of Airway Tree Geometry and Ventilation Frequency on Airflow Distribution
Katrin Bauer,
Katrin Bauer
1
Institute of Mechanics and Fluid Dynamics,
e-mail: Katrin.Bauer@imfd.tu-freiberg.de
TU Bergakademie Freiberg
,Lampadiusstr. 4
,Freiberg 09599
, Germany
e-mail: Katrin.Bauer@imfd.tu-freiberg.de
1Corresponding author.
Search for other works by this author on:
Christoph Brücker
Christoph Brücker
Institute of Mechanics and Fluid Dynamics,
TU Bergakademie Freiberg
,Lampadiusstr. 4
,Freiberg 09599
, Germany
Search for other works by this author on:
Katrin Bauer
Institute of Mechanics and Fluid Dynamics,
e-mail: Katrin.Bauer@imfd.tu-freiberg.de
TU Bergakademie Freiberg
,Lampadiusstr. 4
,Freiberg 09599
, Germany
e-mail: Katrin.Bauer@imfd.tu-freiberg.de
Christoph Brücker
Institute of Mechanics and Fluid Dynamics,
TU Bergakademie Freiberg
,Lampadiusstr. 4
,Freiberg 09599
, Germany
1Corresponding author.
Manuscript received September 30, 2014; final manuscript received April 24, 2015; published online June 9, 2015. Assoc. Editor: Naomi Chesler.
J Biomech Eng. Aug 2015, 137(8): 081001 (10 pages)
Published Online: August 1, 2015
Article history
Received:
September 30, 2014
Revision Received:
April 24, 2015
Online:
June 9, 2015
Citation
Bauer, K., and Brücker, C. (August 1, 2015). "The Influence of Airway Tree Geometry and Ventilation Frequency on Airflow Distribution." ASME. J Biomech Eng. August 2015; 137(8): 081001. https://doi.org/10.1115/1.4030621
Download citation file:
Get Email Alerts
Related Articles
Design of a Pressure Measuring Syringe
J. Med. Devices (June,2010)
Modeling Inspiratory Flow in a Porcine Lung Airway
J Biomech Eng (June,2018)
Visualizing Flow Partitioning in a Model of the Upper Human Lung Airways
J Biomech Eng (March,2010)
Numerical Simulation of Particle Transport and Deposition in the Pulmonary Vasculature
J Biomech Eng (December,2014)
Related Proceedings Papers
Related Chapters
Pulsating Supercavities: Occurrence and Behavior
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Experimental Investigation of Ventilated Supercavitation Under Unsteady Conditions
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Clinical issues and experience
Mechanical Blood Trauma in Circulatory-Assist Devices