A detailed 3D finite element model (FEM) of the sheep thorax was developed to predict heterogeneous and volumetric lung injury due to blast. A shared node mesh of the sheep thorax was constructed from a computed tomography (CT) scan of a sheep cadaver, and while most material properties were taken from literature, an elastic–plastic material model was used for the ribs based on three-point bending experiments performed on sheep rib specimens. Anesthetized sheep were blasted in an enclosure, and blast overpressure data were collected using the blast test device (BTD), while surface lung injury was quantified during necropsy. Matching blasts were simulated using the sheep thorax FEM. Surface lung injury in the FEM was matched to pathology reports by setting a threshold value of the scalar output termed the strain product (maximum value of the dot product of strain and strain-rate vectors over all simulation time) in the surface elements. Volumetric lung injury was quantified by applying the threshold value to all elements in the model lungs, and a correlation was found between predicted volumetric injury and measured postblast lung weights. All predictions are made for the left and right lungs separately. This work represents a significant step toward the prediction of localized and heterogeneous blast lung injury, as well as volumetric injury, which was not recorded during field testing for sheep.

References

1.
Champion
,
H. R.
,
Bellamy
,
R. F.
,
Roberts
,
C. P.
, and
Leppaniemi
,
A.
,
2003
, “
A Profile of Combat Injury
,”
J. Trauma
,
54
(
5 Suppl
), pp.
S13
S19
.
2.
Smith
,
J. E.
,
2011
, “
The Epidemiology of Blast Lung Injury During Recent Military Conflicts: A Retrospective Database Review of Cases Presenting to Deployed Military Hospitals, 2003–2009
,”
Philos. Trans. R. Soc. London, Ser. B
,
366
(
1562
), pp.
291
294
.10.1098/rstb.2010.0251
3.
Ritenour
,
A. E.
,
Blackbourne
,
L. H.
,
Kelly
,
J. F.
,
Mclaughlin
,
D. F.
,
Pearse
,
L. A.
,
Holcomb
,
J. B.
, and
Wade
,
C. E.
,
2010
, “
Incidence of Primary Blast Injury in U.S. Military Overseas Contingency Operations: A Retrospective Study
,”
Ann. Surg.
,
251
(
6
), pp.
1140
1144
.10.1097/SLA.0b013e3181e01270
4.
Champion
,
H. R.
,
Holcomb
,
J. B.
, and
Young
,
L. A.
,
2009
, “
Injuries From Explosions: Physics, Biophysics, Pathology, and Required Research Focus
,”
J. Trauma
,
66
(
5
), pp.
1468
1477
[Discussion, p. 1477].10.1097/TA.0b013e3181a27e7f
5.
Dewey
,
J. M.
,
2010
, “
The Shape of the Blast Wave: Studies of the Friedlander Equation
,”
Proceeding of the 21st International Symposium on Military Aspects of Blast and Shock (MABS)
, Israel, pp.
1
9
.
6.
Cooper
,
G. J.
,
Maynard
,
R. L.
,
Cross
,
N. L.
, and
Hill
,
J. F.
,
1983
, “
Casualties From Terrorist Bombings
,”
J. Trauma
,
23
(
11
), pp.
955
967
.10.1097/00005373-198311000-00001
7.
DePalma
,
R. G.
,
Burris
,
D. G.
,
Champion
,
H. R.
, and
Hodqson
,
M. J.
,
2005
, “
Blast Injuries
,”
N. Engl. J. Med.
,
352
(
13
), pp.
1335
1342
.10.1056/NEJMra042083
8.
MacFadden
,
L. N.
,
Chan
,
P. C.
,
Ho
,
K. H.
, and
Stuhmiller
,
J. H.
,
2012
, “
A Model for Predicting Primary Blast Lung Injury
,”
J. Trauma Acute Care Surg.
,
73
(
5
), pp.
1121
1129
.10.1097/TA.0b013e31825c1536
9.
Yelverton
,
J. T.
,
Hicks
,
W.
, and
Doyal
,
R.
,
1993
, “
Blast Overpressure Studies With Animals and Man: Biological Response to Complex Blast Waves
,” EG&G, Albuquerque, DTIC Accession Final Report No. ADA275038.
10.
Carneal
,
C.
, et al.,
2012
, “
Thoraco-Abdominal Organ Injury Response Trends Due to Complex Blast Loading
,”
Presented at the Personal Armor System Symposium
, Nuremberg, Germany, pp.
1
8
.
11.
Yelverton
,
J. T.
,
1996
, “
Pathology Scoring System for Blast Injuries
,”
J. Trauma
,
40
(
3
), pp.
S111
S115
.10.1097/00005373-199603001-00025
12.
Zienkiewicz
,
O. K.
, and
Taylor
,
R. L.
,
2000
,
The Finite Element Method/ Solid Mechanics
,
Butterworth-Hienemann
,
Oxford, UK
.
13.
Viano
,
D. C.
, and
Lau
,
I. V.
,
1988
, “
A Viscous Tolerance Criterion for Soft Tissue Injury Assessment
,”
J. Biomech.
,
21
(
5
), pp.
387
399
.10.1016/0021-9290(88)90145-5
14.
Gayzik
,
F. S.
,
Hoth
,
J. J.
,
Daly
,
M.
,
Meredith
,
J. W.
, and
Stitzel
,
J. D.
,
2007
, “
A Finite Element-Based Injury Metric for Pulmonary Contusion: Investigation of Candidate Metrics Through Correlation With Computed Tomography
,”
Stapp Car Crash J.
,
51
, pp.
189
209
.
15.
Gayzik
,
F. S.
,
Hoth
,
J. J.
, and
Stitzel
,
J. D.
,
2011
, “
Finite Element-Based Injury Metrics for Pulmonary Contusion via Concurrent Model Optimization
,”
Biomech. Model. Mechanobiol.
,
10
(
4
), pp.
505
520
.10.1007/s10237-010-0251-5
16.
Yu
,
J.
,
Vasel
,
E.
, and
Stuhmiller
,
J.
,
1990
, “
Modeling of the Non-Auditory Response to Blast Overpressure
,” JAYCOR, San Diego, DTIC Accession Final Annual Report No. ADA223665.
17.
Shen
,
W.
,
Niu
,
Y.
,
Mattrey
,
R. F.
,
Fournier
,
A.
,
Corbeil
,
J.
,
Kono
,
Y.
, and
Stuhmiller
,
J. H.
,
2008
, “
Development and Validation of Subject-Specific Finite Element Models for Blunt Trauma Study
,”
ASME J. Biomech. Eng.
,
130
(
2
), pp.
1
13
.10.1115/1.2898723
18.
LS-DYNA,
2007
,
LS-DYNA Keyword User's Manual
,
Livermore Software Technology Corporation
,
Livermore, CA
.
19.
Kimpara
,
H.
,
Iwamoto
,
M.
,
Miki
,
K.
,
Lee
,
J. B.
,
Yang
,
K. H.
, and
King
,
A. I.
,
2006
, “
Effect of Assumed Stiffness and Mass Density on the Impact Response of the Human Chest Using a Three-Dimensional FE Model of the Human Body
,”
ASME J. Biomech. Eng.
,
128
(
5
), pp.
772
776
.10.1115/1.2264394
20.
Yamada
,
H.
,
1970
,
Strength of Biological Materials
,
F. G.
Evans
, ed.,
The Williams and Wilkins Company
,
Baltimore, MD
.
21.
Granik
,
G.
, and
Stein
,
I.
,
1973
, “
Human Ribs: Static Testing as a Promising Medical Application
,”
J. Biomech.
,
6
(
3
), pp.
237
240
.10.1016/0021-9290(73)90045-6
22.
Elsayed
,
N. M.
,
1997
, “
Toxicology of Blast Overpressure
,”
Toxicology
,
121
(
1
), pp.
1
15
.10.1016/S0300-483X(97)03651-2
23.
Mayorga
,
M. A.
,
1997
, “
The Pathology of Primary Blast Overpressure Injury
,”
Toxicology
,
121
(
1
), pp.
17
28
.10.1016/S0300-483X(97)03652-4
24.
Ng
,
L. J.
,
Sih
,
B. L.
, and
Stuhmiller
,
J. H.
,
2011
, “
An Integrated Exercise Response and Muscle Fatigue Model for Performance Decrement Estimates of Workloads in Oxygen-Limiting Environments
,”
Eur. J. Appl. Physiol.
,
112
(
4
), pp.
1229
1249
.10.1007/s00421-011-2062-5
25.
Shelley
,
D.
,
Sih
,
B.
, and
Ng
,
L.
,
2014
, “
An Integrated Physiology Model to Study Regional Lung Damage Effects and Physiologic Response
,”
Theor. Biol. Med. Model.
,
11
(
32
).10.1186/1742-4682-11-32
You do not currently have access to this content.