The ability to predict patient-specific joint contact and muscle forces accurately could improve the treatment of walking-related disorders. Muscle synergy analysis, which decomposes a large number of muscle electromyographic (EMG) signals into a small number of synergy control signals, could reduce the dimensionality and thus redundancy of the muscle and contact force prediction process. This study investigated whether use of subject-specific synergy controls can improve optimization prediction of knee contact forces during walking. To generate the predictions, we performed mixed dynamic muscle force optimizations (i.e., inverse skeletal dynamics with forward muscle activation and contraction dynamics) using data collected from a subject implanted with a force-measuring knee replacement. Twelve optimization problems (three cases with four subcases each) that minimized the sum of squares of muscle excitations were formulated to investigate how synergy controls affect knee contact force predictions. The three cases were: (1) Calibrate+Match where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously matched, (2) Precalibrate+Predict where experimental knee contact forces were predicted using precalibrated muscle model parameters values from the first case, and (3) Calibrate+Predict where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously predicted, all while matching inverse dynamic loads at the hip, knee, and ankle. The four subcases used either 44 independent controls or five synergy controls with and without EMG shape tracking. For the Calibrate+Match case, all four subcases closely reproduced the measured medial and lateral knee contact forces (R2 ≥ 0.94, root-mean-square (RMS) error < 66 N), indicating sufficient model fidelity for contact force prediction. For the Precalibrate+Predict and Calibrate+Predict cases, synergy controls yielded better contact force predictions (0.61 < R2 < 0.90, 83 N < RMS error < 161 N) than did independent controls (-0.15 < R2 < 0.79, 124 N < RMS error < 343 N) for corresponding subcases. For independent controls, contact force predictions improved when precalibrated model parameter values or EMG shape tracking was used. For synergy controls, contact force predictions were relatively insensitive to how model parameter values were calibrated, while EMG shape tracking made lateral (but not medial) contact force predictions worse. For the subject and optimization cost function analyzed in this study, use of subject-specific synergy controls improved the accuracy of knee contact force predictions, especially for lateral contact force when EMG shape tracking was omitted, and reduced prediction sensitivity to uncertainties in muscle model parameter values.

References

1.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
,
2007
, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech. (Bristol Avon)
,
22
(
2
), pp.
131
154
.10.1016/j.clinbiomech.2006.09.005
2.
Praemer
,
A.
,
Furner
,
S.
, and
Rice
,
D. P.
,
1999
,
Musculoskeletal Conditions in the United States
,
American Academy of Orthopaedic Surgeons
,
Rosemont, IL
.
3.
Piazza
,
S. J.
,
2006
, “
Muscle-Driven Forward Dynamic Simulations for the Study of Normal and Pathological Gait
,”
J. Neuroeng. Rehab.
,
3
, p.
5
.10.1186/1743-0003-3-5
4.
Thelen
,
D. G.
, and
Anderson
,
F. C.
,
2006
, “
Using Computed Muscle Control to Generate Forward Dynamic Simulations of Human Walking From Experimental Data
,”
J. Biomech.
,
39
(
6
), pp.
1107
1115
.10.1016/j.jbiomech.2005.02.010
5.
Duda
,
G. N.
,
Schneider
,
E.
, and
Chao
,
E. Y.
,
1997
, “
Internal Forces and Moments in the Femur During Walking
,”
J. Biomech.
,
30
(
9
), pp.
933
941
.10.1016/S0021-9290(97)00057-2
6.
Glitsch
,
U.
, and
Baumann
,
W.
,
1997
, “
The Three-Dimensional Determination of Internal Loads in the Lower Extremity
,”
J. Biomech.
,
30
(
11–12
), pp.
1123
1131
.10.1016/S0021-9290(97)00089-4
7.
Liu
,
M. Q.
,
Anderson
,
F. C.
,
Schwartz
,
M. H.
, and
Delp
,
S. L.
,
2008
, “
Muscle Contributions to Support and Progression Over a Range of Walking Speeds
,”
J. Biomech.
,
41
(
15
), pp.
3243
3252
.10.1016/j.jbiomech.2008.07.031
8.
Allen
,
J. L.
, and
Neptune
,
R. R.
,
2012
, “
Three-Dimensional Modular Control of Human Walking
,”
J. Biomech.
,
45
(
12
), pp.
2157
2163
.10.1016/j.jbiomech.2012.05.037
9.
Kim
,
H. J.
,
Fernandez
,
J. W.
,
Akbarshahi
,
M.
,
Walter
,
J. P.
,
Fregly
,
B. J.
, and
Pandy
,
M. G.
,
2009
, “
Evaluation of Predicted Knee-Joint Muscle Forces During Gait Using an Instrumented Knee Implant
,”
J. Orthop. Res.
,
27
(
10
), pp.
1326
1331
.10.1002/jor.20876
10.
Sartori
,
M.
,
Gizzi
,
L.
,
Lloyd
,
D. G.
, and
Farina
,
D.
,
2013
, “
A Musculoskeletal Model of Human Locomotion Driven by a Low Dimensional Set of Impulsive Excitation Primitives
,”
Front. Comput. Neurosci.
,
7
, p.
79
.10.3389/fncom.2013.00079
11.
Lin
,
Y. C.
,
Walter
,
J. P.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
Fregly
,
B. J.
,
2010
, “
Simultaneous Prediction of Muscle and Contact Forces in the Knee During Gait
,”
J. Biomech.
,
43
(
5
), pp.
945
952
.10.1016/j.jbiomech.2009.10.048
12.
Buchanan
,
T. S.
,
Lloyd
,
D. G.
,
Manal
,
K.
, and
Besier
,
T. F.
,
2004
, “
Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements From Measurements of Neural Command
,”
J. Appl. Biomech.
,
20
(
4
), pp.
367
395
.
13.
Sartori
,
M.
,
Reggiani
,
M.
,
Farina
,
D.
, and
Lloyd
,
D. G.
,
2012
, “
EMG-Driven Forward-Dynamic Estimation of Muscle Force and Joint Moment About Multiple Degrees of Freedom in the Human Lower Extremity
,”
PloS One
,
7
(
12)
, p.
e52618
.10.1371/journal.pone.0052618
14.
Jonkers
, I
.
,
Spaepen
,
A.
,
Papaioannou
,
G.
, and
Stewart
,
C.
,
2002
, “
An EMG-Based, Muscle Driven Forward Simulation of Single Support Phase of Gait
,”
J. Biomech.
,
35
(
5
), pp.
609
619
.10.1016/S0021-9290(01)00240-8
15.
White
,
S. C.
, and
Winter
,
D. A.
,
1992
, “
Predicting Muscle Forces in Gait From EMG Signals and Musculotendon Kinematics
,”
J. Electromyogr. Kinesiol.
,
2
(
4
), pp.
217
231
.10.1016/1050-6411(92)90025-E
16.
Disselhorst-Klug
,
C.
,
Schmitz-Rode
,
T.
, and
Rau
,
G.
,
2009
, “
Surface Electromyography and Muscle Force: Limits in sEMG-Force Relationship and New Approaches for Applications
,”
Clin. Biomech. Bristol Avon
,
24
(
3
), pp.
225
235
.10.1016/j.clinbiomech.2008.08.003
17.
De
Luca
,
C. J.
,
1997
, “
The Use of Surface Electromyography in Biomechanics
,”
J. Appl. Biomech.
,
13
, pp.
135
163
.
18.
Cappellini
,
G.
,
Ivanenko
,
Y. P.
,
Poppele
,
R. E.
, and
Lacquaniti
F.
,
2006
, “
Motor Patterns in Human Walking and Running
,”
J. Neurophysiol.
,
95
(
6
), pp.
3426
3437
.10.1152/jn.00081.2006
19.
Ivanenko
,
Y. P.
,
Poppele
,
R. E.
, and
Lacquaniti
,
F.
,
2004
, “
Five Basic Muscle Activation Patterns account for Muscle Activity During Human Locomotion
,”
J. Physiol.
,
556
(
Pt. 1
), pp.
267
282
.10.1113/jphysiol.2003.057174
20.
Clark
,
D. J.
,
Ting
,
L. H.
,
Zajac
,
F. E.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
,
2010
, “
Merging of Healthy Motor Modules Predicts Reduced Locomotor Performance and Muscle Coordination Complexity Post-Stroke
,”
J. Neurophysiol.
,
103
(
2
), pp.
844
857
.10.1152/jn.00825.2009
21.
Neptune
,
R. R.
,
Clark
,
D. J.
, and
Kautz
,
S. A.
,
2009
, “
Modular Control of Human Walking: A Simulation Study
,”
J. Biomech.
,
42
(
9
), pp.
1282
1287
.10.1016/j.jbiomech.2009.03.009
22.
McGowan
,
C. P.
,
Neptune
,
R. R.
,
Clark
,
D. J.
, and
Kautz
,
S. A.
,
2010
, “
Modular Control of Human Walking: Adaptations to Altered Mechanical Demands
,”
J. Biomech.
,
43
(
3
), pp.
412–419
.10.1016/j.jbiomech.2009.10.009
23.
Allen
,
J. L.
,
Kautz
,
S. A.
, and
Neptune
,
R. R.
,
2013
, “
The Influence of Merged Muscle Excitation Modules on Post-Stroke Hemiparetic Walking Performance
,”
Clin. Biomech. (Bristol Avon)
,
28
(
6
), pp.
697
704
.10.1016/j.clinbiomech.2013.06.003
24.
Fregly
,
B. J.
,
Besier
,
T. F.
,
Lloyd
,
D. G.
,
Delp
,
S. L.
,
Banks
,
S. A.
,
Pandy
,
M. G.
, and
D'Lima
,
D. D.
,
2012
, “
Grand Challenge Competition to Predict In Vivo Knee Loads
,”
J. Orthop. Res.
,
30
(
4
), pp.
503
513
.10.1002/jor.22023
25.
Kirking
,
B.
,
Krevolin
,
J.
,
Townsend
,
C.
,
Colwell
, Jr.
C. W.
, and
D'Lima
,
D. D.
,
2006
, “
A Multiaxial Force-Sensing Implantable Tibial Prosthesis
,”
J. Biomech.
,
39
(
9
), pp.
1744
1751
.10.1016/j.jbiomech.2005.05.023
26.
Kristianslund
,
E.
,
Krosshaug
,
T.
, and
van den Bogert
,
A. J.
,
2012
, “
Effect of Low Pass Filtering on Joint Moments From Inverse Dynamics: Implications for Injury Prevention
,”
J. Biomech.
,
45
(
4
), pp.
666
671
.10.1016/j.jbiomech.2011.12.011
27.
Lee
,
D. D.
, and
Seung
,
H. S.
,
1999
, “
Learning the Parts of Objects by Non-Negative Matrix Factorization
,”
Nature
,
401
(
6755
), pp.
788
791
.10.1038/44565
28.
Ting
,
L. H.
, and
Chvatal
,
S. A.
,
2010
, “
Decomposing Muscle Activity in Motor Tasks
,”
Motor Control Theories, Experiments and Applications
.
Oxf. Univ. Press
,
New York
, pp.
102v
-
138
.
29.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
,
Guendelman
,
E.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.10.1109/TBME.2007.901024
30.
Reinbolt
,
J. A.
,
Schutte
,
J. F.
,
Fregly
,
B. J.
,
Koh
,
B. I.
,
Haftka
,
R. T.
,
George
,
A. D.
, and
Mitchell
,
K. H.
,
2005
, “
Determination of Patient-Specific Multi-Joint kinematic Models Through Two-Level Optimization
,”
J. Biomech.
,
38
(
3
), pp.
621
626
.10.1016/j.jbiomech.2004.03.031
31.
Fregly
,
B. J.
,
Reinbolt
,
J. A.
,
Rooney
,
K. L.
,
Mitchell
,
K. H.
, and
Chmielewski
,
T. L.
,
2007
, “
Design of Patient-Specific Gait Modifications for Knee osteoarthritis rehabilitation
,”
IEEE Trans. Biomed. Eng.
,
54
(
9
), pp.
1687
-
1695
.10.1109/TBME.2007.891934
32.
Arnold
,
E. M.
,
Ward
,
S. R.
,
Lieber
,
R. L.
, and
Delp
,
S. L.
,
2010
, “
A Model of the Lower Limb for Analysis of Human Movement
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
269
279
.10.1007/s10439-009-9852-5
33.
Fregly
,
B. J.
,
Banks
,
S. A.
,
D'Lima
,
D. D.
, and
Colwell
,
C. W.
Jr.
,
2008
, “
Sensitivity of Knee Replacement Contact Calculations to Kinematic Measurement Errors
,”
J. Orthop. Res.
,
26
(
9
), pp.
1173
1179
.10.1002/jor.20548
34.
Zhao
,
D.
,
Banks
,
S. A.
,
D'Lima
,
D. D.
,
Colwell
,
C. W.
Jr.
, and
Fregly
,
B. J.
,
2007
, “
in vivo Medial and Lateral Tibial Loads During Dynamic and High Flexion Activities
,”
J. Orthop. Res.
,
25
(
5
), pp.
593
602
.10.1002/jor.20362
35.
Corcos
,
D. M.
,
Gottlieb
,
G. L.
,
Latash
,
M. L.
,
Almeida
,
G. L.
, and
Agarwal
,
G. C.
,
1992
, “
Electromechanical Delay: An Experimental Artifact
,”
J. Electromyogr. Kinesiol.
,
2
(
2
), pp.
59
68
.10.1016/1050-6411(92)90017-D
36.
He
,
J.
,
Levine
,
W. S.
, and
Loeb
,
G. E.
,
1991
, “
Feedback Gains for Correcting Small Perturbations to Standing Posture
,”
Autom. Control IEEE Trans.
,
36
(
3
), pp.
322
332
.10.1109/9.73565
37.
Van den Bogert
,
A. J.
,
Blana
,
D.
, and
Heinrich
,
D.
,
2011
, “
Implicit Methods for Efficient Musculoskeletal Simulation and Optimal Control
,”
Procedia IUTAM
,
2
, pp.
297
316
.10.1016/j.piutam.2011.04.027
38.
Manal
,
K.
, and
Buchanan
,
T. S.
,
2003
, “
A One-Parameter neural Activation to Muscle Activation Model: Estimating Isometric Joint Moments From Electromyograms
,”
J. Biomech.
,
36
(
8
), pp.
1197
1202
.10.1016/S0021-9290(03)00152-0
39.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.
40.
Kinney
,
A. L.
,
Besier
,
T. F.
,
D'Lima
,
D. D.
, and
Fregly
,
B. J.
,
2013
, “
Update on Grand Challenge Competition to Predict In Vivo Knee Loads
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021012
.10.1115/1.4023255
41.
Kim
,
Y.-H.
,
Park
,
W.-M.
, and
Phuong
,
B. T. T.
,
2010
, “
Effect of Joint Center Location on In-Vivo Joint Contact Forces During Walking
,”
Proceedings of the ASME 2010 Summer Bioengineering Conference
, Naples, FL, Paper No. SBC2010-19353.
42.
Hast
,
M. W.
, and
Piazza
,
S. J.
,
2013
, “
Dual-Joint Modeling for Estimation of Total Knee Replacement Contact Forces During Locomotion
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021013
.10.1115/1.4023320
43.
Manal
,
K.
, and
Buchanan
,
T. S.
,
2013
, “
An Electromyogram-Driven Musculoskeletal Model of the Knee to Predict In Vivo Joint Contact Forces During Normal and Novel Gait Patterns
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021014
.10.1115/1.4023457
44.
Lundberg
,
H. J.
,
Knowlton
,
C.
, and
Wimmer
,
M. A.
,
2013
, “
Fine Tuning Total Knee Replacement Contact Force Prediction Algorithms Using Blinded Model Validation
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021015
.10.1115/1.4023388
You do not currently have access to this content.