Organ printing is a novel concept recently introduced in developing artificial three-dimensional organs to bridge the gap between transplantation needs and organ shortage. One of the major challenges is inclusion of blood-vessellike channels between layers to support cell viability, postprinting functionality in terms of nutrient transport, and waste removal. In this research, we developed a novel and effective method to print tubular channels encapsulating cells in alginate to mimic the natural vascular system. An experimental investigation into the influence on cartilage progenitor cell (CPCs) survival, and the function of printing parameters during and after the printing process were presented. CPC functionality was evaluated by checking tissue-specific genetic marker expression and extracellular matrix production. Our results demonstrated the capability of direct fabrication of cell-laden tubular channels by our newly designed coaxial nozzle assembly and revealed that the bioprinting process could induce quantifiable cell death due to changes in dispensing pressure, coaxial nozzle geometry, and biomaterial concentration. Cells were able to recover during incubation, as well as to undergo differentiation with high-level cartilage-associated gene expression. These findings may not only help optimize our system but also can be applied to biomanufacturing of 3D functional cellular tissue engineering constructs for various organ systems.

References

1.
Langer
,
R.
, and
Vacanti
,
J. P.
,
1993
, “
Tissue Engineering
,”
Science
,
260
(
5110
), pp.
920
926
.10.1126/science.8493529
2.
Tang
,
Q. O.
,
Carasco
,
C. F.
,
Gamie
,
Z.
,
Korres
,
N.
,
Mantalaris
,
A.
, and
Tsiridis
,
E.
,
2012
, “
Preclinical and Clinical Data for the Use of Mesenchymal Stem Cells in Articular Cartilage Tissue Engineering
,”
Expert Opin. Biol. Thera.
,
12
(
10
), pp.
1361
1382
.10.1517/14712598.2012.707182
3.
Griffith
,
L. G.
, and
Swartz
,
M. A.
,
2006
, “
Capturing Complex 3D Tissue Physiology In Vitro
,”
Nat. Review
,
7
(
3
), pp.
211
224
.10.1038/nrm1858
4.
Langer
,
R. S.
, and
Vacanti
,
J. P.
,
1999
, “
Tissue Engineering: The Challenges Ahead
,”
Sci. Am.
,
280
(
4
), pp.
86
89
.10.1038/scientificamerican0499-86
5.
Mironov
, V
.
,
Trusk
,
T.
,
Kasyanov
, V
.
,
Little
,
S.
,
Swaja
,
R.
, and
Markwald
,
R.
,
2009
, “
Biofabrication: A 21st Century Manufacturing Paradigm
,”
Biofabrication
,
1
(
2
), p.
022001
.10.1088/1758-5082/1/2/022001
6.
Boland
,
T.
,
Xu
,
T.
,
Damon
,
B.
, and
Cui
,
X.
,
2006
, “
Application of Inkjet Printing to Tissue Engineering
,”
Biotech. J.
,
1
(
9
), pp.
910
917
.10.1002/biot.200600081
7.
Cohen
,
D. L.
,
Malone
,
E.
,
Lipson
,
H.
, and
Bonassar
,
L. J.
,
2006
, “
Direct Freeform Fabrication of Seeded Hydrogels in Arbitrary Geometries
,”
Tissue Eng.
,
12
(
5
), pp.
1325
1335
.10.1089/ten.2006.12.1325
8.
Wang
,
X.
,
Yan
,
Y.
,
Pan
,
Y.
,
Xiong
,
Z.
,
Liu
,
H.
,
Cheng
,
J.
,
Liu
,
F.
,
Lin
,
F.
,
Wu
,
R.
,
Zhang
,
R.
, and
Lu
,
Q.
,
2006
, “
Generation of Three-Dimensional Hepatocyte/Gelatin Structures With Rapid Prototyping System
,”
Tissue Eng.
,
12
(
1
), pp.
83
90
.10.1089/ten.2006.12.83
9.
Boland
,
T.
,
Mironov
, V
.
,
Gutowska
,
A.
,
Roth
,
E. A.
, and
Markwald
,
R. R.
,
2003
, “
Cell and Organ Printing 2: Fusion of Cell Aggregates in Three-Dimensional Gels
,”
Anat. Red. A
,
272
(
2
), pp.
497
502
.10.1002/ar.a.10059
10.
Xu
,
T.
,
Jin
,
J.
,
Gregory
,
C.
,
Hickman
,
J. J.
, and
Boland
,
T.
,
2005
, “
Inkjet Printing of Viable Mammalian Cells
,”
Biomaterials
,
26
(
1
), pp.
93
99
.10.1016/j.biomaterials.2004.04.011
11.
Xu
,
T.
,
Gregory
,
C. A.
,
Molnar
,
P.
,
Cui
,
X.
,
Jalota
,
S.
,
Bhaduri
,
S. B.
, and
Boland
,
T.
,
2006
, “
Viability and Electrophysiology of Neural Cell Structures Generated by the Inkjet Printing Method
,”
Biomaterials
,
27
(
19
), pp.
3580
3588
.
12.
Barron
,
J. A.
,
Wu
,
P.
,
Ladouceur
,
H. D.
, and
Ringeisen
,
B. R.
,
2004
, “
Biological Laser Printing: A Novel Technique for Creating Heterogeneous 3-Dimensional Cell Patterns
,”
Biomed. Microdevices
,
6
(
2
), pp.
139
147
.10.1023/B:BMMD.0000031751.67267.9f
13.
Ringeisen
,
B. R.
,
Kim
,
H.
,
Barron
,
J. A.
,
Krizman
,
D. B.
,
Chrisey
,
D. B.
,
Jackman
,
S.
,
Auyeung
,
R. Y.
, and
Spargo
,
B. J.
,
2004
, “
Laser Printing of Pluripotent Embryonal Carcinoma Cells
,”
Tissue Eng.
,
10
(
3–4
), pp.
483
491
.10.1089/107632704323061843
14.
Odde
,
D. J.
, and
Renn
,
M. J.
,
1999
, “
Laser-Guided Direct Writing for Applications in Biotechnology
,”
Trends Biotech.
,
17
(
10
), pp.
385
389
.10.1016/S0167-7799(99)01355-4
15.
Barron
,
J. A.
,
Ringeisen
,
B. R.
,
Kim
,
H.
,
Spargo
,
B. J.
, and
Chrisey
,
D. B.
,
2004
, “
Application of Laser Printing to Mammalian Cells
,”
Thin Solid Films
,
453-454
, pp.
383
387
.10.1016/j.tsf.2003.11.161
16.
Wu
,
P. K.
,
Ringeisen
,
B. R.
,
Callahan
,
J.
,
Brooks
,
M.
,
Bubb
,
D. M.
,
Wu
,
H. D.
,
Piqué
,
A.
,
Spargo
,
B.
,
McGill
,
R. A.
, and
Chrisey
,
D. B.
,
2001
, “
The Deposition, Structure, Pattern Deposition, and Activity of Biomaterial Thin-Films by Matrix-Assisted Pulsed-Laser Evaporation (MAPLE) and MAPLE Direct Write
,”
Thin Solid Films
,
398-399
, pp.
607
614
.10.1016/S0040-6090(01)01347-5
17.
Khalil
,
S.
, and
Sun
,
W.
,
2007
, “
Biopolymer Deposition for Freeform Fabrication of Hydrogel Tissue Constructs
,”
Mater. Sci. Eng. C
,
27
(
3
), pp.
469
478
.10.1016/j.msec.2006.05.023
18.
Ang
,
T. H.
,
Sultana
,
F. S. A.
,
Hutmacher
,
D. W.
,
Wong
,
Y. S.
,
Fuh
,
J. Y. H.
,
Mo
,
X. M.
,
Loh
,
H. T.
,
Burdet
,
E.
, and
Teoh
,
S. H.
,
2002
, “
Fabrication of 3D Chitosan–Hydroxyapatite Scaffolds Using a Robotic Dispensing System
,”
Mater. Sci. Eng. C
,
20
(
1–2
), pp.
35
42
.10.1016/S0928-4931(02)00010-3
19.
Yan
,
Y.
,
Xiong
,
Z.
,
Hu
,
Y.
,
Wang
,
S.
,
Zhang
,
R.
, and
Zhang
,
C.
,
2003
, “
Layered Manufacturing of Tissue Engineering Scaffolds via Multi-Nozzle Deposition
,”
Mater. Lett.
,
57
(
18
), pp.
2623
2628
.10.1016/S0167-577X(02)01339-3
20.
Melchels
,
F. P. W.
,
Domingos
,
M. A. N.
,
Klein
,
T. J.
,
Malda
,
J.
,
Bartolo
,
P. J.
, and
Hutmacher
,
D. W.
,
2012
, “
Additive Manufacturing of Tissues and Organs
,”
Prog. Polym. Sci.
,
37
(
8
), pp.
1079
1104
.10.1016/j.progpolymsci.2011.11.007
21.
Mironov
, V
.
,
Visconti
,
R. P.
,
Kasyanov
, V
.
,
Forgacs
,
G.
,
Drake
,
C. J.
, and
Markwald
,
R. R.
,
2009
, “
Organ Printing: Tissue Spheroids as Building Blocks
,”
Biomaterials
,
30
(
12
), pp.
2164
2174
.10.1016/j.biomaterials.2008.12.084
22.
Ozbolat
, I
.
, and
Yu
,
Y.
,
2013
, “
Bioprinting Towards Organ Fabrication: Challenges and Future Trends
,”
IEEE Trans. Biomed. Eng.
,
60
(
3
), pp.
691
699
.10.1109/TBME.2013.2243912
23.
Xu
,
C.
,
Chai
,
W.
,
Huang
,
Y.
, and
Markwald
,
R. R.
,
2012
, “
Scaffold-Free Inkjet Printing of Three-Dimensional Zigzag Cellular Tubes
,”
Biotech. Bioeng.
,
109
(
12
), pp.
3152
3160
.10.1002/bit.24591
24.
Ozawa
,
F.
,
Ino
,
K.
,
Takahashi
,
Y.
,
Shiku
,
H.
, and
Matsue
,
T.
,
2013
, “
Electrodeposition of Alginate Gels for Construction of Vascular-Like Structures
,”
J. Biosci. Bioeng.
,
115
(
4
), pp.
459
461
.10.1016/j.jbiosc.2012.10.014
25.
Napolitano
,
A.
,
Dean
,
D.
,
Man
,
A.
,
Youssef
,
J.
,
Ho
,
D.
,
Rago
,
A.
,
Lech
,
M.
, and
Morgan
,
J.
,
2007
, “
Scaffold-Free Three-Dimensional Cell Culture Utilizing Micromolded Nonadhesive Hydrogels
,”
BioTechniques
,
43
(
4
), pp.
494
500
.10.2144/000112591
26.
Chang
,
R.
,
Nam
,
J.
, and
Sun
,
W.
,
2008
, “
Effects of Dispensing Pressure and Nozzle Diameter on Cell Survival From Solid Freeform Fabrication-Based Direct Cell Writing
,”
Tissue Eng. A
,
14
(
1
), pp.
41
48
.10.1089/ten.a.2007.0004
27.
Lin
,
Y.
,
Huang
,
Y.
,
Wang
,
G.
,
Tzeng
,
T.-R. J.
, and
Chrisey
,
D. B.
,
2009
, “
Effect of Laser Fluence on Yeast Cell Viability in Laser-Assisted Cell Transfer
,”
J. Appl. Phys.
,
106
(
4
), pp.
043106
043107
.10.1063/1.3202388
28.
Cui
,
X.
,
Dean
,
D.
,
Ruggeri
,
Z. M.
, and
Boland
,
T.
,
2010
, “
Cell Damage Evaluation of Thermal Inkjet Printed Chinese Hamster Ovary Cells
,”
Biotech. Bioeng.
,
106
(
6
), pp.
963
969
.10.1002/bit.22762
29.
Nair
,
K.
,
Gandhi
,
M.
,
Khalil
,
S.
,
Yan
,
K. C.
,
Marcolongo
,
M.
,
Barbee
,
K.
, and
Sun
,
W.
,
2009
, “
Characterization of Cell Viability During Bioprinting Processes
,”
Biotech. J.
,
4
(
8
), pp.
1168
1177
.10.1002/biot.200900004
30.
Norotte
,
C.
,
Marga
,
F. S.
,
Niklason
,
L. E.
, and
Forgacs
,
G.
,
2009
, “
Scaffold-Free Vascular Tissue Engineering Using Bioprinting
,”
Biomaterials
,
30
(
30
), pp.
5910
5917
.10.1016/j.biomaterials.2009.06.034
31.
Cui
,
X.
,
Breitenkamp
,
K.
,
Finn
,
M. G.
,
Lotz
,
M.
, and
D'Lima
,
D. D.
,
2012
, “
Direct Human Cartilage Repair Using Three-Dimensional Bioprinting Technology
,”
Tissue Eng. A
,
18
(
11–12
), pp.
1304
1312
.10.1089/ten.tea.2011.0543
32.
Duan
,
B.
,
Hockaday
,
L. A.
,
Kang
,
K. H.
, and
Butcher
,
J. T.
,
2012
, “
3D Bioprinting of Heterogeneous Aortic Valve Conduits With Alginate/Gelatin Hydrogels
,”
J. Biomed. Mater. Res. A
.,
101
(
5
), pp.
1255
1264
.
33.
Yu
,
Y.
,
2012
, “
Identification and Characterization of Cartilage Progenitor Cells by Single Cell Sorting and Cloning
,” Master's thesis, University of Iowa, Iowa City, IA.
34.
Xiang
,
L.
,
Wang
,
S.
, and
Yu
,
M.
,
2012
, “
Alginate Microencapsulation Technology for the Percutaneous Delivery of Adipose-Derived Stem Cells
,”
Ann. Plastic Surg.
,
68
(
2
), pp. 229–230.10.1097/SAP.0b013e3182384068
35.
Chhabra
,
R. P.
, and
Richardson
,
J. F.
,
2008
,
Non-Newtonian Flow and Applied Rheology
,
Elsevier
,
Amsterdam
.
36.
Zhang
,
Y.
,
Yu
,
Y.
,
Chen
,
H.
, and
Ozbolat
, I
. T.
,
2013
, “
Characterization of Printable Cellular Micro-Fluidic Channels for Tissue Engineering
,”
Biofabrication
,
5
(
2
), p.
025004
.10.1088/1758-5082/5/2/025004
37.
Norton
, I
. T.
,
Spyropoulos
,
F.
, and
Cox
,
P.
,
2011
,
Practical Food Rheology an Interpretive Approach
,
Wiley-Blackwell
,
Oxford
.
38.
Zhang
,
Y.
,
Yu
,
Y.
, and
Ozbolat
,
I. T.
,
2013
, “
Direct Bioprinting of Vessel-Like Tubular Microfluidic Channels
,”
ASME J. Nanotech. Eng. Med.
(in press).
You do not currently have access to this content.