Characteristic models of the upper conducting airways are needed to evaluate the performance of existing pharmaceutical inhalers and to develop new respiratory drug delivery strategies. Previous studies have focused on the development of characteristic mouth–throat (MT) geometries for orally inhaled products; however, characteristic upper tracheobronchial (TB) geometries are currently not available. In this study, a new characteristic model of the upper TB airways for an average adult male was developed based on an analysis of new and existing anatomical data. Validated computational fluid dynamics (CFD) simulations were used to evaluate the deposition of monodisperse and realistic polydisperse aerosols from multiple inhalers. Comparisons of deposition results between the new model and a simpler geometry were used to identify the effects of different anatomical features on aerosol deposition. The CFD simulations demonstrated a good match to regional pharmaceutical aerosol deposition from in vitro experiments in the same geometry. The deposition of both monodisperse and pharmaceutical aerosols was increased in the new TB geometry as a result of additional anatomical detail on a regional and highly localized basis. Tracheal features including an accurate coronal angle, asymmetry, and curvature produced a skewed laryngeal jet and significantly increased regional deposition. Branch curvature and realistic cross-sections increased deposition in the remainder of the TB model. A hexahedral mesh style was utilized to provide the best solution. In conclusion, a number of physiological features in the upper TB region were shown to influence deposition and should be included in a characteristic model of respiratory drug delivery.

References

1.
Grgic
,
B.
,
Finlay
,
W. H.
, and
Heenan
,
A. F.
,
2004
, “
Regional aerosol deposition and Flow Measurements in an Idealized Mouth and Throat
,”
J. Aerosol Sci.
,
35
, pp.
21
32
.10.1016/S0021-8502(03)00387-2
2.
Zhang
,
Y.
,
Gilbertson
,
K.
, and
Finlay
,
W. H.
,
2007
, “
In Vivo-In Vitro Comparison of Deposition in Three Mouth-Throat Models With Qvar and Turbuhaler Inhalers
,”
J. Aerosol Med.
,
20
(
3
), pp.
227
235
.10.1089/jam.2007.0584
3.
Ilie
,
M.
,
Matida
,
E. A.
, and
Finlay
,
W. H.
,
2008
, “
Asymmetrical Aerosol Deposition in an Idealized Mouth With a DPI Mouthpiece Inlet
,”
Aerosol Sci. Technol.
,
42
, pp.
10
17
.10.1080/02786820701777440
4.
Kleinstreuer
,
C.
,
Shi
,
H.
, and
Zhang
,
Z.
,
2007
, “
Computational Analyses of a Pressurized Metered Dose Inhaler and an New Drug-Aerosol Targeting Methodology
,”
J. Aerosol Med.
,
20
(
3
), pp.
294
309
.10.1089/jam.2006.0617
5.
Zhang
,
Y.
,
Chia
,
T. L.
, and
Finlay
,
W. H.
,
2006
, “
Experimental Measurement and Numerical Study of Particle Deposition in Highly Idealized Mouth-Throat Models
,”
Aerosol Sci. Technol.
,
40
, pp.
361
372
.10.1080/02786820600615055
6.
Longest
,
P. W.
, and
Hindle
,
M.
,
2009
, “
Evaluation of the Respimat Soft Mist Inhaler Using a Concurrent CFD and In Vitro Approach
,”
J. Aerosol Med. Pulm. Drug Deliv.
,
22
(
2
), pp.
99
112
.10.1089/jamp.2008.0708
7.
Longest
,
P. W.
, and
Hindle
,
M.
,
2009
, “
Quantitative Analysis and Design of a Spray Aerosol Inhaler. Part 1: Effects of Dilution Air Inlets and Flow Paths
,”
J. Aerosol Med. Pulm. Drug Deliv.
,
22
(
3
), pp.
271
283
.10.1089/jamp.2008.0739
8.
Byron
,
P. R.
,
Hindle
,
M.
,
Lange
,
C. F.
,
Longest
,
P. W.
,
McRobbie
,
D.
,
Oldham
,
M. J.
,
Olsson
,
B.
,
Thiel
,
C. G.
,
Wachtel
,
H.
, and
Finlay
,
W. H.
,
2010
, “
In Vivo-In Vitro Correlations: Predicting Pulmonary Drug Deposition From Pharmaceutical Aerosols
,”
J. Aerosol Med. Pulm. Drug Deliv.
,
23
, pp.
S59
S69
.10.1089/jamp.2010.0846
9.
Stapleton
,
K. W.
,
Guentsch
,
E.
,
Hoskinson
,
M. K.
, and
Finlay
,
W. H.
,
2000
, “
On the Suitability of K-Epsilon Turbulence Modeling for Aerosol Deposition in the Mouth and Throat: A Comparison With Experiment
,”
J. Aerosol Sci.
,
31
(
6
), pp.
739
749
.10.1016/S0021-8502(99)00547-9
10.
Wang
,
Z. L.
,
Grgic
,
B.
, and
Finlay
,
W. H.
,
2006
, “
A Dry Powder Inhaler With Reduced Mouth-Throat Deposition
,”
J. Aerosol Med.
,
19
(
2
), pp.
168
174
.10.1089/jam.2006.19.168
11.
DeHaan
,
W. H.
, and
Finlay
,
W. H.
,
2001
, “
In Vitro Monodisperse Aerosol Deposition in a Mouth and Throat With Six Different Inhalation Devices
,”
J. Aerosol Med.
,
14
(
3
), pp.
361
367
.10.1089/089426801316970321
12.
Matida
,
E. A.
,
Finlay
,
W. H.
, and
Grgic
,
L. B.
,
2004
, “
Improved Numerical Simulation of Aerosol Deposition in an Idealized Mouth-Throat
,”
J. Aerosol Sci.
,
35
, pp.
1
19
.10.1016/S0021-8502(03)00381-1
13.
Zhang
,
Y.
,
Finlay
,
W. H.
, and
Matida
,
E. A.
,
2004
, “
Particle Deposition Measurements and Numerical Simulations in a Highly Idealized Mouth-Throat
,”
J. Aerosol Sci.
,
35
, pp.
789
803
.10.1016/j.jaerosci.2003.12.006
14.
Grgic
,
B.
,
Finlay
,
W. H.
,
Burnell
,
P. K. P.
, and
Heenan
,
A. F.
,
2004
, “
In Vitro Intersubject and Intrasubject Deposition Measurements in Realistic Mouth-Throat Geometries
,”
J. Aerosol Sci.
,
35
(
8
), pp.
1025
1040
.10.1016/j.jaerosci.2004.03.003
15.
Stahlhofen
,
W.
,
Rudolf
,
G.
, and
James
,
A. C.
,
1989
, “
Intercomparison of Experimental Regional Aerosol Deposition Data
,”
J. Aerosol Med.
,
2
(
3
), pp.
285
308
.10.1089/jam.1989.2.285
16.
Xi
,
J.
, and
Longest
,
P. W.
,
2007
, “
Transport and Deposition of Micro-Aerosols in Realistic and Simplified Models of the Oral Airway
,”
Ann. Biomed. Eng.
,
35
(
4
), pp.
560
581
.10.1007/s10439-006-9245-y
17.
Xi
,
J.
,
Longest
,
P. W.
, and
Martonen
,
T. B.
,
2008
, “
Effects of the Laryngeal Jet on Nano- and Microparticle Transport and Deposition in an Approximate Model of the Upper Tracheobronchial Airways
,”
J. Appl. Physiol.
,
104
, pp.
1761
1777
.10.1152/japplphysiol.01233.2007
18.
Zhou
,
Y.
,
Sun
,
J.
, and
Cheng
,
Y. S.
,
2011
, “
Comparison of Deposition in the USP and Physical Mouth-Throat Models With Solid and Liquid Particles
,”
J. Aerosol Med. Pulm. Drug Deliv.
,
24
(
6
), pp.
277
284
.10.1089/jamp.2011.0882
19.
Longest
,
P. W.
,
Hindle
,
M.
,
Das Choudhuri
,
S.
, and
Xi
,
J.
,
2008
, “
Comparison of Ambient and Spray Aerosol Deposition in a Standard Induction Port and More Realistic Mouth-Throat Geometry
,”
J. Aerosol Sci.
,
39
, pp.
572
591
.10.1016/j.jaerosci.2008.03.008
20.
Delvadia
,
R.
Longest
,
P. W.
and
Byron
,
P. R.
,
2012
, “
In Vitro Tests for Aerosol Deposition. I. Scaling a Physical Model of the Upper Airways to Predict Drug Deposition Variation in Normal Humans
,”
J. Aerosol Med.
,
25
(
1
), pp.
32
40
.
21.
Delvadia
,
R.
,
Hindle
,
M.
,
Longest
,
P. W.
, and
Byron
,
P. R.
,
2012
, “
In Vitro Tests for Aerosol Deposition. II: IVIVCs for Different Dry Powder Inhalers in Normal Adults
,”
J. Aerosol Med. Pulm. Drug Deliv.
, (in press).
22.
Burnell
,
P. K. P.
,
Asking
,
L.
,
Borgstrom
,
L.
,
Nichols
,
S. C.
,
Olsson
,
B.
,
Prime
,
D.
, and
Shrubb
,
I.
,
2007
, “
Studies of the Human Oropharyngeal Airspaces Using Magnetic Resonance Imaging IV-The Oropharyngeal Retention Effect for Four Inhalation Delivery Systems
,”
J. Aerosol Med.
,
20
(
3
), pp.
269
281
.10.1089/jam.2007.0566
23.
Zhang
,
Z.
,
Kleinstreuer
,
C.
, and
Kim
,
C. S.
,
2009
, “
Comparison of Analytical and CFD Models With Regard to Micron Particle Deposition in a Human 16-Generation Tracheobronchial Airway Model
,”
J. Aerosol Sci.
,
40
, pp.
16
28
.10.1016/j.jaerosci.2008.08.003
24.
Isaacs
,
K. K.
,
Schlesinger
,
R. B.
, and
Martonen
,
T. B.
,
2006
, “
Three-Dimensional Computational Fluid Dynamics Simulations of Particle Deposition in the Tracheobronchial Tree
,”
J. Aerosol Med.
,
19
(
3
), pp.
344
352
.10.1089/jam.2006.19.344
25.
Russo
,
J.
,
Robinson
,
R.
, and
Oldham
,
M. J.
,
2008
, “
Effects of Cartilage Rings on Airflow and Particle Deposition in the Trachea and Main Bronchi
,”
Med. Eng. Phys.
,
30
, pp.
581
589
.10.1016/j.medengphy.2007.06.010
26.
Zhang
,
Y.
, and
Finlay
,
W. H.
,
2005
, “
Measurement of the Effect of Cartilaginous Rings on Particle Deposition in a Proximal Lung Bifurcation Model
,”
Aerosol Sci. Technol.
,
39
, pp.
394
399
.10.1080/027868290945785
27.
Kleinstreuer
,
C.
and
Zhang
,
Z.
,
2009
, “
An Adjustable Triple-Bifurcation Unit Model for Air-Particle Flow Simulations in Human Tracheobronchial Airways
,”
ASME J. Biomech. Eng.
,
131
, p.
021007
.10.1115/1.3005339
28.
Walters
,
D. K.
, and
Luke
,
W. H.
,
2011
, “
Computational Fluid Dynamics Simulations of Particle Deposition in Large-Scale Multigenerational Lung Models
,”
ASME J. Biomech. Eng.
,
133
, p.
011003
.10.1115/1.4002936
29.
Zhang
,
Z.
,
Kleinstreuer
,
C.
,
Donohue
,
J. F.
, and
Kim
,
C. S.
,
2005
, “
Comparison of Micro- and Nano-Size Particle Depositions in a Human Upper Airway Model
,”
J. Aerosol Sci.
,
36
(
2
), pp.
211
233
.10.1016/j.jaerosci.2004.08.006
30.
Jin
,
H. H.
,
Fan
,
J. R.
,
Zeng
,
M. J.
, and
Cen
,
K. F.
,
2007
, “
Large Eddy Simulation of Inhaled Particle Deposition Within the Human Upper Respiratory Tract
,”
J. Aerosol Sci.
,
38
, pp.
257
268
.10.1016/j.jaerosci.2006.09.008
31.
Lambert
,
A. R.
,
O’Shaughnessy
,
P. T.
,
Tawhai
,
M. H.
,
Hoffman
,
E. A.
, and
Lin
,
C.-L.
,
2011
, “
Regional Deposition of Particles in an Image-Based Airway Model: Large-Eddy Simulation and Left-Right Lung Ventilation Asymmetry
,”
Aerosol Sci. Technol.
,
45
, pp.
11
25
.10.1080/02786826.2010.517578
32.
Sauret
,
V.
,
Halson
,
P. M.
,
Brown
,
I. W.
,
Fleming
,
J. S.
, and
Bailey
,
A. G.
,
2002
, “
Study of the Three-Dimensional Geometry of the Central Conducting Airways in Man Using Computed Tomographic (CT) Images
,”
J. Anat.
,
2002
, pp.
123
134
.10.1046/j.0021-8782.2001.00018.x
33.
Robinson
,
R. J.
,
Russo
,
J.
, and
Doolittle
,
R. L.
,
2009
, “
3D Airway Reconstruction Using Visible Human Data Set and Human Casts With Comparison to Morpometric Data
,”
Anat. Rec.
,
292
, pp.
1028
1044
.10.1002/ar.20898
34.
Montesantos
,
S.
,
Fleming
,
J. S.
, and
Tossici-Bold
,
L.
,
2010
, “
A Spatial Model of the Human Airway Tree: The Hybrid Conceptual Model
,”
J. Aerosol Med. Pulm. Drug Deliv.
,
23
(
1
), pp.
59
68
.10.1089/jamp.2009.0765
35.
Lin
,
C.-L.
,
Tawhai
,
M. H.
,
McLennan
,
G.
, and
Hoffman
,
E. A.
,
2007
, “
Characteristics of the Turbulent Laryngeal Jet and its Effect on Airflow in the Human Intra-Thoracic Airways
,”
Resp. Physiol. Neurobiol.
,
157
, pp.
295
309
.10.1016/j.resp.2007.02.006
36.
Lin
,
C.-L.
,
Tawhai
,
M. H.
,
McLennan
,
G.
, and
Hoffman
,
E. A.
,
2009
, “
Multiscale Simulation of Gas Flow in Subject-Specific Models of the Human Lung
,”
IEEE Eng. Med. Biol. Mag.
,
28
, pp.
25
33
.
37.
Choi
,
J.
,
Tawhai
,
M.
,
Hoffman
,
E. A.
, and
Lin
,
C. L.
,
2009
, “
On Intra- and Intersubject Variabilities of Airflow in the Human Lungs
,”
Phys. Fluids
,
21
, p.
101901
.10.1063/1.3247170
38.
Ma
,
B.
, and
Lutchen
,
K. R.
,
2009
, “
CFD Simulations of Aerosol Deposition in an Anatomically Based Human Large-Medium Airway Model
,”
Ann. Biomed. Eng.
,
37
(
2
), pp.
271
285
.10.1007/s10439-008-9620-y
39.
Inthavong
,
K.
,
Choi
,
L.-T.
,
Tu
,
J.
,
Diang
,
S.
, and
Thien
,
F.
,
2010
, “
Micron Particle Deposition in a Tracheobronchial Airway Model Under Different Breathing Conditions
,”
Med. Eng. Phys.
,
32
, pp.
1198
1212
.10.1016/j.medengphy.2010.08.012
40.
De Backer
,
J. W.
,
Vos
,
W. G.
,
Vinchurkar
,
S. C.
,
Claes
,
R.
,
Drollmann
,
A.
,
Wulfrank
,
D.
,
Parizel
,
P. M.
,
Germonpre
,
P.
, and
De Backer
,
W.
,
2010
, “
Validation of Computational Fluid Dynamics in CT-based Airway Models With SPECT/CT
,”
Radiology
,
257
(
3
), pp.
854
862
.10.1148/radiol.10100322
41.
Xi
,
J.
, and
Longest
,
P. W.
,
2008
, “
Evaluation of a Novel Drift Flux Model for Simulating Submicrometer Aerosol Dynamics in Human Upper Tracheobronchial Airways
,”
Ann. Biomed. Eng.
,
36
(
10
), pp.
1714
1734
.10.1007/s10439-008-9552-6
42.
Longest
,
P. W.
, and
Hindle
,
M.
,
2011
, “
Condensational Growth of Combination Drug-Excipient Submicrometer Particles: Comparison of CFD Predictions With Experimental Results
,”
Pharm. Res.
(in press).
43.
Heistracher
,
T.
, and
Hofmann
,
W.
,
1995
, “
Physiologically Realistic Models of Bronchial Airway Bifurcations
,”
J. Aerosol Sci.
,
26
(
3
), pp.
497
509
.10.1016/0021-8502(94)00113-D
44.
Yeh
,
H. C.
, and
Schum
,
G. M.
,
1980
, “
Models of Human Lung Airways and Their Application to Inhaled Particle Deposition
,”
Bull. Math. Biol.
,
42
, p.
461
480
.
45.
Horsfield
,
K.
,
Dart
,
G.
,
Olson
,
D. E.
,
Filley
,
G. F.
, and
Cumming
,
G.
,
1971
, “
Models of the Human Bronchial Tree
,”
J. Appl. Physiol.
,
31
, pp.
207
217
.
46.
Hammersley
,
J. R.
, and
Olson
,
D. E.
,
1992
, “
Physical Models of the Smaller Pulmonary Airways
,”
J. Appl. Physiol.
,
72
, pp.
2402
2414
.
47.
Tian
,
G.
,
Longest
,
P. W.
,
Su
,
G.
, and
Hindle
,
M.
,
2011
, “
Characterization of Respiratory Drug Delivery With Enhanced Condensational Growth (ECG) Using an Individual Path Model of the Entire Tracheobronchial Airways
,”
Ann. Biomed. Eng.
,
39
(
3
), pp.
1136
1153
.10.1007/s10439-010-0223-z
48.
Tian
,
G.
,
Longest
,
P. W.
,
Su
,
G.
,
Walenga
,
R. L.
, and
Hindle
,
M.
,
2011
, “
Development of a Stochastic Individual Path (SIP) Model for Predicting the Tracheobronchial Deposition of Pharmaceutical Aerosols: Effects of Transient Inhalation and Sampling the Airways
,”
J. Aerosol Sci.
,
42
, pp.
781
799
.10.1016/j.jaerosci.2011.07.005
49.
Longest
,
P. W.
,
Tian
,
G.
,
Walenga
,
R. L.
, and
Hindle
,
M.
,
2012
, “
Comparing MDI and DPI Aerosol Deposition Using In Vitro Experiments and a New Stochastic Individual Path (SIP) Model of the Conducting Airways
,”
Pharm. Res.
,
29
, pp.
1670
1688
.10.1007/s11095-012-0691-y
50.
Vinchurkar
,
S.
, and
Longest
,
P. W.
,
2008
, “
Evaluation of Hexahedral, Prismatic and Hybrid Mesh Styles for Simulating Respiratory Aerosol Dynamics
,”
Comput. Fluids
,
37
, pp.
317
331
.10.1016/j.compfluid.2007.05.001
51.
Longest
,
P. W.
, and
Vinchurkar
,
S.
,
2007
, “
Effects of Mesh Style and Grid Convergence on Particle Deposition in Bifurcating Airway Models With Comparisons to Experimental Data
,”
Med. Eng. Phys.
,
29
(
3
), pp.
350
366
.10.1016/j.medengphy.2006.05.012
52.
ICRP
,
1994
,
Human Respiratory Tract Model for Radiological Protection
,
Elsevier Science Ltd.
,
New York
.
53.
Griscom
,
N. T.
, and
Wohl
,
M. E. B.
,
1986
, “
Dimensions of the Growing Trachea Related to Age and Gender
,”
Am. J. Roentgenol.
,
146
(
2
), pp.
233
237
.10.2214/ajr.146.2.233
54.
Phalen
,
R. F.
,
Oldham
,
M. J.
,
Beaucage
,
C. B.
,
Crocker
,
T. T.
, and
Mortensen
,
J. D.
,
1985
, “
Postnatal Enlargement of Human Tracheobronchial Airways and Implications for Particle Deposition
,”
Anat. Rec.
,
212
, pp.
368
380
.10.1002/ar.1092120408
55.
Raabe
,
O. G.
,
Yeh
,
H. C.
,
Schum
,
G. M.
, and
Phalen
,
R. F.
,
1976
, “Tracheobronchial Geometry: Human, Dog, Rat, Hamster”, Report No. LF-53. Available at: http://hdl.handle.net/123456789/71
56.
Soong
,
T. T.
,
Nicolaides
,
P.
,
Yu
,
C. P.
, and
Soong
,
S. C.
,
1979
, “
A Statistical Description of the Human Tracheobronchial Tree Geometry
,”
Respir. Physiol.
,
37
(
2
), pp.
161
172
.10.1016/0034-5687(79)90068-9
57.
Weibel
,
E. R.
,
1963
,
Morphometry of the Human Lung
,
Springer-Verlag
,
Berlin
.
58.
Kuo
,
Y.
,
Tully
,
E. A.
, and
Galea
,
M. P.
,
2009
, “
Video Analysis of Sagittal Spinal Posture in Healthy Young and Older Adults
,”
J. Manipulative Physiol. Ther.
,
32
(
3
), pp.
210
215
.10.1016/j.jmpt.2009.02.002
59.
Martin
,
G. P.
,
Marriott
,
C.
, and
Zhang
,
X. M.
,
2007
, “
Influence of Realistic Inspiratory Flow Profiles on Fine Particle Fractions of Dry Powder Aerosol Formulations
,”
Pharm. Res.
,
24
(
2
), pp.
361
369
.10.1007/s11095-006-9156-5
60.
Asgharian
,
B.
, and
Price
,
O. T.
,
2006
, “
Airflow Distribution in the Human Lung and its Influence on Particle Deposition
,”
Inhal. Toxicol.
,
18
, pp.
795
801
.10.1080/08958370600748687
61.
Yin
,
Y.
,
Choi
,
J.
,
Hoffman
,
E. A.
,
Tawhai
,
M. H.
, and
Lin
,
C.-L.
,
2010
, “
Simulation of Pulmonary Air Flow With a Subject-Specific Boundary Condition
,”
J. Biomech.
,
43
, pp.
2159
2163
.10.1016/j.jbiomech.2010.03.048
62.
Longest
,
P. W.
,
Hindle
,
M.
,
Das Choudhuri
,
S.
, and
Byron
,
P. R.
,
2007
, “
Numerical Simulations of Capillary Aerosol Generation: CFD Model Development and Comparisons With Experimental Data
,”
Aerosol Sci. Technol.
,
41
, pp.
952
973
.10.1080/02786820701607027
63.
Longest
,
P. W.
, and
Vinchurkar
,
S.
,
2007
, “
Validating CFD Predictions of Respiratory Aerosol Deposition: Effects of Upstream Transition and Turbulence
,”
J. Biomech.
,
40
, pp.
305
316
.10.1016/j.jbiomech.2006.01.006
64.
Longest
,
P. W.
,
Hindle
,
M.
,
Das Choudhuri
,
S.
, and
Byron
,
P. R.
,
2008
, “
Developing a Better Understanding of Spray System Design Using a Combination of CFD Modeling and Experiment
,”
Proceedings of Respiratory Drug Delivery 2008
,
R. N.
Dalby
,
P. R.
Byron
,
J.
Peart
,
J. D.
Suman
,
S. J.
Farr
, and
P. M.
Young
, eds,
Davis Healthcare International Publishing
,
Illinois
, pp.
151
-
163
.
65.
Longest
,
P. W.
, and
Xi
,
J.
,
2008
, “
Condensational Growth May Contribute to the Enhanced Deposition of Cigarette Smoke Particles in the Upper Respiratory Tract
,”
Aerosol Sci. Technol.
,
42
, pp.
579
602
.10.1080/02786820802232964
66.
Longest
,
P. W.
, and
Xi
,
J.
,
2007
, “
Effectiveness of Direct Lagrangian Tracking Models for Simulating Nanoparticle Deposition in the Upper Airways
,”
Aerosol Sci. Technol.
,
41
, pp.
380
397
.10.1080/02786820701203223
67.
Stein
,
S. W.
, and
Myrdal
,
P. B.
,
2006
, “
The Relative Influence of Atomization and Evaporation on Metered Dose Inhaler Drug Delivery Efficiency
,”
Aerosol Sci. Technol.
,
40
, pp.
335
347
.10.1080/02786820600612268
68.
Balashazy
,
I.
,
Hofmann
,
W.
, and
Heistracher
,
T.
,
1999
, “
Computation of Local Enhancement Factors for the Quantification of Particle Deposition Patterns in Airway Bifurcations
,”
J. Aerosol Sci.
,
30
, pp.
185
203
.10.1016/S0021-8502(98)00040-8
69.
Zhou
,
Y.
, and
Cheng
,
Y. S.
,
2005
, “
Particle Deposition in a Cast of Human Tracheobrochial Airways
,”
Aerosol Sci. Technol.
,
39
, pp.
492
500
.10.1080/027868291001385
70.
Leach
,
C. L.
,
Davidson
,
P. J.
, and
Bouhuys
,
A.
,
1998
, “
Improved Airway Targeting With the CFC-Free HFA-Beclomethasone Metered-Dose Inhaler Compared With CFC-Beclomethasone
,”
Eur. Respir. J.
,
12
, pp.
1346
1353
.10.1183/09031936.98.12061346
71.
Newman
,
S. P.
, and
Busse
,
W. W.
,
2002
, “
Evolution of Dry Powder Inhaler Design, Formulation, and Performance
,”
Respir. Med.
,
96
, pp.
293
304
.10.1053/rmed.2001.1276
72.
Islam
,
N.
, and
Cleary
,
M. J.
,
2012
, “
Developing an Efficient and Reliable Dry Powder Inhaler for Pulmonary Drug Delivery—A Review for Multidisciplinary Researchers
,”
Med. Eng. Phys.
,
34
, pp.
409
427
.10.1016/j.medengphy.2011.12.025
73.
Newman
,
S. P.
,
Pitcairn
,
G. R.
,
Hirst
,
P. H.
,
Bacon
,
R. E.
,
O’Keefe
,
E.
,
Reiners
,
M.
, and
Hermann
,
R.
,
2000
, “
Scintigraphic Comparison of Budesonide Deposition From Two Dry Powder Inhalers
,”
Eur. Respir. J.
,
16
(
1
), pp.
178
183
.10.1034/j.1399-3003.2000.16a29.x
74.
Conway
,
J.
,
Fleming
,
J.
,
Majoral
,
C.
,
Katz
,
I.
,
Perchet
,
D.
,
Peebles
,
C.
,
Tossici-Bolt
,
L.
,
Collier
,
L.
,
Caillibotte
,
G.
,
Pichelin
,
M.
,
Sauret-Jackson
,
V.
,
Martonen
,
T.
,
Apiou-Sbirlea
,
G.
,
Muellinger
,
B.
,
Kroneberg
,
P.
,
Gleske
,
J.
,
Scheuch
,
G.
,
Texereau
,
J.
,
Martin
,
A.
,
Montesantos
,
S.
, and
Bennett
,
M.
,
2012
, “
Controlled, Parametric, Individualized, 2-D and 3-D Imaging Measurements of Aerosol Deposition in the Respiratory Tract of Healthy Human Subjects for Model Validation
,”
J. Aerosol Sci.
,
52
, pp.
1
17
.10.1016/j.jaerosci.2012.04.006
You do not currently have access to this content.