Normal human walking typically consists of phases during which the body is statically unbalanced while maintaining dynamic stability. Quantifying the dynamic characteristics of human walking can provide better understanding of gait principles. We introduce a novel quantitative index, the dynamic gait measure (DGM), for comprehensive gait cycle. The DGM quantifies the effects of inertia and the static balance instability in terms of zero-moment point and ground projection of center of mass and incorporates the time-varying foot support region (FSR) and the threshold between static and dynamic walking. Also, a framework of determining the DGM from experimental data is introduced, in which the gait cycle segmentation is further refined. A multisegmental foot model is integrated into a biped system to reconstruct the walking motion from experiments, which demonstrates the time-varying FSR for different subphases. The proof-of-concept results of the DGM from a gait experiment are demonstrated. The DGM results are analyzed along with other established features and indices of normal human walking. The DGM provides a measure of static balance instability of biped walking during each (sub)phase as well as the entire gait cycle. The DGM of normal human walking has the potential to provide some scientific insights in understanding biped walking principles, which can also be useful for their engineering and clinical applications.

References

1.
Vaughan
,
C. L.
,
2003
, “
Theories of Bipedal Walking: An Odyssey
,”
J. Biomech.
,
36
(
4
), pp.
513
523
.10.1016/S0021-9290(02)00419-0
2.
Kuo
,
A. D.
,
2007
, “
The Six Determinant of Gait and the Inverted Pendulum Analogy: A Dynamic Walking Perspective
,”
Hum. Mov. Sci.
,
26
(
4
), pp.
617
656
.10.1016/j.humov.2007.04.003
3.
Racic
,
V.
,
Pavic
,
A.
, and
Brownjohn
,
J. M. W.
,
2009
, “
Experimental Identification and Analytical Modelling of Human Walking Forces: Literature Review
,”
J. Sound Vib.
,
326
(
1–2
), pp.
1
49
.10.1016/j.jsv.2009.04.020
4.
Xiang
,
Y.
,
Arora
,
J. S.
, and
Abdel-Malek
,
K.
,
2010
, “
Physics-Based Modeling and Simulation of Human Walking: A Review of Optimization-Based and Other Approaches
,”
Struct. Multidiscip. Optim.
,
42
(
1
), pp.
1
23
.10.1007/s00158-010-0496-8
5.
McGeer
,
T.
,
1990
, “
Passive Dynamic Walking
,”
Int. J. Robot. Res.
,
9
(
2
), pp.
62
82
.10.1177/027836499000900206
6.
Wisse
,
M.
,
Schwab
,
A. L.
, and
van der Helm
,
F. C. T.
,
2004
, “
Passive Dynamic Walking Model With Upper Body
,”
Robotica
,
22
(
6
), pp.
681
688
.10.1017/S0263574704000475
7.
Kuo
,
A. D.
,
Donelan
,
J. M.
, and
Ruina
,
A.
,
2005
, “
Energetic Consequences of Walking Like an Inverted Pendulum: Step-To-Step Transitions
,”
Exerc. Sport Sci. Rev.
,
33
(
2
), pp.
88
97
.10.1097/00003677-200504000-00006
8.
Kim
,
S.
, and
Park
,
S.
,
2011
, “
Leg Stiffness Increases With Speed to Modulate Gait Frequency and Propulsion Energy
,”
J. Biomech.
,
44
(
7
), pp.
1253
1258
.10.1016/j.jbiomech.2011.02.072
9.
Srinivasan
,
M.
,
2011
, “
Fifteen Observations on the Structure of Energy-Minimizing Gaits in Many Simple Biped Models
,”
J. R. Soc., Interface
,
8
(
54
), pp.
74
98
.10.1098/rsif.2009.0544
10.
Park
,
J. H.
, and
Kim
,
K. D.
,
1998
, “
Biped Robot Walking Using Gravity- Compensated Inverted Pendulum Mode and Computed Torque Control
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Leuven, Belgium
, Vol.
4
, pp.
3528
3533
.
11.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Fujiwara
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2002
, “
A Realtime Pattern Generator for Biped Walking
,”
Proceedings of the 2002 IEEE International Conference on Robotics and Automation
,
Washington, DC
, Vol.
1
, pp.
31
37
.
12.
Albert
,
A.
, and
Gerth
,
W.
,
2003
, “
Analytic Path Planning Algorithms for Bipedal Robots Without a Trunk
,”
J. Intell. Robotic Syst.
,
36
(
2
), pp.
109
127
.10.1023/A:1022600522613
13.
Ha
,
T.
, and
Choi
,
C.-H.
,
2007
, “
An Effective Trajectory Generation Method for Bipedal Walking
,”
Rob. Auton. Syst.
,
55
(
10
), pp.
795
810
.10.1016/j.robot.2007.06.001
14.
Li
,
J.
, and
Chen
,
W.
,
2011
, “
Energy-Efficient Gait Generation for Biped Robot Based on the Passive Inverted Pendulum Model
,”
Robotica
,
29
(
4
), pp.
595
605
.10.1017/S0263574710000408
15.
Geyer
,
H.
,
Seyfarth
,
A.
, and
Blickhan
,
R.
,
2006
, “
Compliant Leg Behaviour Explains Basic Dynamics of Walking and Running
,”
Proc. R. Soc. London, Ser. B
,
273
(
1603
), pp.
2861
2867
.10.1098/rspb.2006.3637
16.
Shen
,
Z. H.
, and
Seipel
,
J. E.
,
2012
, “
A Fundamental Mechanism of Legged Locomotion With Hip Torque and Leg Damping
,”
Bioinspir. Biomim.
,
7
(
4
),
046010
.10.1088/1748-3182/7/4/046010
17.
Collins
,
S. H.
,
Ruina
,
A.
,
Tedrake
,
R.
, and
Wisse
,
M.
,
2005
, “
Efficient Bipedal Robots Based on Passive-Dynamic Walkers
,”
Science
,
307
(
5712
), pp.
1082
1085
.10.1126/science.1107799
18.
Collins
,
S. H.
, and
Ruina
,
A.
,
2005
, “
A Bipedal Walking Robot With Efficient And Human-Like Gait
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
, pp.
1983
1988
.
19.
Rostami
,
M.
, and
Bessonnet
,
G.
,
2001
, “
Sagittal Gait of a Biped Robot During the Single Support Phase. Part 1: Passive Motion
,”
Robotica
,
19
(
2
), pp.
163
176
.10.1017/S0263574700003027
20.
Vanderborght
,
B.
,
Verrelst
,
B.
,
Van Ham
,
R.
,
Van Damme
,
M.
, and
Lefeber
,
D.
,
2008
, “
Objective Locomotion Parameters Based Inverted Pendulum Trajectory Generator
,”
Rob. Auton. Syst.
,
56
(
9
), pp.
738
750
.10.1016/j.robot.2008.01.003
21.
Collins
,
S. H.
,
Adamczyk
,
P. G.
, and
Kuo
,
A. D.
,
2009
, “
Dynamic Arm Swinging in Human Walking
,”
Proc. R. Soc. London, Ser. B
,
276
(
1673
), pp.
3679
3688
.10.1098/rspb.2009.0664
22.
Braun
,
D. J.
, and
Goldfarb
,
M.
,
2009
, “
A Control Approach for Actuated Dynamic Walking in Biped Robots
,”
IEEE Trans. Robot.
,
25
(
5
), pp.
1292
1303
.10.1109/TRO.2009.2028762
23.
Kuo
,
A. D.
,
2001
, “
A Simple Model of Bipedal Walking Predicts the Preferred Speed–Step Length Relationship
,”
J. Biomech. Eng.
,
123
(
3
), pp.
264
269
.10.1115/1.1372322
24.
Donelan
,
J. M.
,
Kram
,
R.
, and
Kuo
,
A. D.
,
2001
, “
Mechanical and Metabolic Determinants of the Preferred Step Width in Human Walking
,”
Proc. R. Soc. London, Ser. B
,
268
(
1480
), pp.
1985
1992
.10.1098/rspb.2001.1761
25.
Yeom
,
J.
, and
Park
,
S.
,
2011
, “
A Gravitational Impulse Model Predicts Collision Impulse and Mechanical Work During a Step-To-Step Transition
,”
J. Biomech.
,
44
(
1
), pp.
59
67
.10.1016/j.jbiomech.2010.08.024
26.
Goswami
,
A.
,
1999
, “
Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point
,”
Int. J. Robot. Res.
,
18
(
6
), pp.
523
533
.10.1177/02783649922066376
27.
Mrozowski
,
J.
,
Awrejcewicz
,
J.
, and
Bamberski
,
P.
,
2007
, “
Analysis of Stability of the Human Gait
,”
J. Theor. Appl. Mech.
,
45
(
1
), pp.
91
98
.
28.
Vukobratović
,
M.
, and
Borovac
,
B.
,
2004
, “
Zero-Moment Point—Thirty Five Years of its Life
,”
Int. J. Humanoid Robot.
,
1
(
1
), pp.
157
173
.10.1142/S0219843604000083
29.
Popovic
,
M. B.
,
Goswami
,
A.
, and
Herr
,
H.
,
2005
, “
Ground Reference Points in Legged Locomotion: Definitions, Biological Trajectories and Control Implications
,”
Int. J. Robot. Res.
,
24
(
12
), pp.
1013
1032
.10.1177/0278364905058363
30.
Zielinska
,
T.
,
Chew
,
C.-M.
,
Kryczka
,
P.
, and
Jargilo
,
T.
,
2009
, “
Robot Gait Synthesis Using the Scheme of Human Motions Skills Development
,”
Mech. Mach. Theory
,
44
(
3
), pp.
541
558
.10.1016/j.mechmachtheory.2008.09.007
31.
Sardain
,
P.
, and
Bessonnet
,
G.
,
2004
, “
Forces Acting on a Biped Robot. Center of Pressure-Zero Moment Point
,”
IEEE Trans. Syst. Man Cybern., Part A, Syst. Humans
,
34
(
5
), pp.
630
637
.10.1109/TSMCA.2004.832811
32.
Azevedo
,
C.
,
Andreff
,
N.
, and
Arias
,
S.
,
2004
, “
Bipedal Walking: From Gait Design to Experimental Analysis
,”
Mechatronics
,
14
(
6
), pp.
639
665
.10.1016/j.mechatronics.2003.12.001
33.
Andriacchi
,
T. P.
,
Ogle
,
J. A.
, and
Galante
,
J. O.
,
1977
, “
Walking Speed as a Basis for Normal and Abnormal Gait Measurements
,”
J. Biomech.
,
10
(
4
), pp.
261
268
.10.1016/0021-9290(77)90049-5
34.
Lai
,
P. P. K.
,
Leung
,
A. K. L.
,
Li
,
A. N. M.
, and
Zhang
,
M.
,
2008
, “
Three-Dimensional Gait Analysis of Obese Adults
,”
Clin. Biomech. (Bristol, Avon)
,
23
(
Suppl. 1
), pp.
S2
S6
.10.1016/j.clinbiomech.2008.02.004
35.
Ko
,
S. U.
,
Ling
,
S. M.
,
Winters
,
J.
, and
Ferrucci
,
L.
,
2009
, “
Age-Related Mechanical Work Expenditure During Normal Walking: The Baltimore Longitudinal Study of Aging
,”
J. Biomech.
,
42
(
12
), pp.
1834
1839
.10.1016/j.jbiomech.2009.05.037
36.
Mummolo
,
C.
, and
Kim
,
J. H.
,
2013
, “
Passive and Dynamic Gait Measures for Biped Mechanism: Formulation and Simulation Analysis
,”
Robotica
,
31
(
4
), pp.
555
572
.10.1017/S0263574712000586
37.
Saunders
,
J. B.
,
Inman
,
V. T.
, and
Eberhart
,
H. D.
,
1953
, “
The Major Determinants in Normal and Pathological Gait
,”
J. Bone Jt. Surg.
,
35
(
3
), pp.
543
558
.
38.
Winter
,
D. A.
,
2005
,
Biomechanics and Motor Control of Human Movement
, 3rd ed.,
Wiley
,
New York
.
39.
Dixon
,
P. C.
,
Bohm
,
H.
, and
Doderlein
,
L.
,
2012
, “
Ankle and Midfoot Kinetics During Normal Gait: A Multi-Segment Approach
,”
J. Biomech.
,
45
(
6
), pp.
1011
1016
.10.1016/j.jbiomech.2012.01.001
40.
Inman
,
V. T.
,
Ralston
,
H. J.
, and
Todd
,
F.
,
1981
,
Human Walking
,
Williams and Wilkins
,
Baltimore
.
41.
Vaughan
,
C. L.
,
Davis
,
B. L.
, and
O'Connor
,
J. C.
,
1992
,
Dynamics of Human Gait
,
Kiboho Publishers
,
Cape Town, South Africa
.
42.
Millard
,
M.
,
Wight
,
D.
,
McPhee
,
J.
,
Kubica
,
E.
, and
Wang
,
D.
,
2009
, “
Human Foot Placement and Balance in the Sagittal Plane
,”
ASME J. Biomech. Eng.
,
131
(
12
),
121001
.10.1115/1.4000193
43.
Buzzi
,
U. H.
, and
Ulrich
,
B. D.
,
2004
, “
Dynamic Stability of Gait Cycles as a Function of Speed and System Constraints
,”
Motor Control
,
8
(
3
), pp.
241
254
.
44.
Dingwell
,
J. B.
, and
Marin
,
L. C.
,
2006
, “
Kinematic Variability and Local Dynamic Stability of Upper Body Motions When Walking at Different Speeds
,”
J. Biomech.
,
39
(
3
), pp.
444
452
.10.1016/j.jbiomech.2004.12.014
45.
England
,
S. A.
, and
Granata
,
K. P.
,
2007
, “
The Influence of Gait Speed on Local Dynamic Stability of Walking
,”
Gait and Posture
,
25
(
2
), pp.
172
178
.10.1016/j.gaitpost.2006.03.003
46.
Kang
,
H. G.
, and
Dingwell
,
J. B.
,
2008
, “
Separating the Effects of Age and Walking Speed on Gait Variability
,”
Gait and Posture
,
27
(
4
), pp.
572
577
.10.1016/j.gaitpost.2007.07.009
47.
Bruijn
,
S. M.
,
Ten
Kate
,
W. R. Th.
,
Faber
,
G. S.
,
Meijer
,
O. G.
,
Beek
,
P. J.
, and
van Dieen
,
J. H.
,
2010
, “
Estimating Dynamic Gait Stability Using Data From Non-Aligned Inertial Sensors
,”
Ann. Biomed. Eng.
,
38
(
8
), pp.
2588
2593
.10.1007/s10439-010-0018-2
48.
Umberger
,
B. R.
,
2010
, “
Stance and Swing Phase Costs in Human Walking
,”
J. R. Soc., Interface
,
7
(
50
), pp.
1329
1340
.10.1098/rsif.2010.0084
49.
Farris
,
D. J.
, and
Sawicki
,
G. S.
,
2011
, “
The Mechanics and Energetics of Human Walking and Running: A Joint Level Perspective
,”
J. R. Soc., Interface
,
9
(
66
), pp.
110
118
.10.1098/rsif.2011.0182
You do not currently have access to this content.