In current practice, diagnostic parameters, such as fractional flow reserve (FFR) and coronary flow reserve (CFR), are used to determine the severity of a coronary artery stenosis. FFR is defined as the ratio of hyperemic pressures distal (p˜rh) and proximal (p˜ah) to a stenosis. CFR is the ratio of flow at hyperemic and basal condition. Another diagnostic parameter suggested by our group is the pressure drop coefficient (CDP). CDP is defined as the ratio of the pressure drop across the stenosis to the upstream dynamic pressure. These parameters are evaluated by invasively measuring flow (CFR), pressure (FFR), or both (CDP) in a diseased artery using guidewire tipped with a sensor. Pathologic state of artery is indicated by lower CFR (<2). Similarly, FFR lower than 0.75 leads to clinical intervention. Cutoff for CDP is under investigation. Diameter and vascular condition influence both flow and pressure drop, and thus, their effect on FFR and CDP was studied. In vitro experiment coupled with pressure-flow relationships from human clinical data was used to simulate pathophysiologic conditions in two representative arterial diameters, 2.5 mm (N1) and 3 mm (N2). With a 0.014 in. (0.35 mm) guidewire inserted, diagnostic parameters were evaluated for mild (∼64% area stenosis (AS)), intermediate (∼80% AS), and severe (∼90% AS) stenosis for both N1 and N2 arteries, and between two conditions, with and without myocardial infarction (MI). Arterial diameter did not influence FFR for clinically relevant cases of mild and intermediate stenosis (difference < 5%). Stenosis severity was underestimated due to higher FFR (mild: ∼9%, intermediate: ∼ 20%, severe: ∼ 30%) for MI condition because of lower pressure drops, and this may affect clinical decision making. CDP varied with diameter (mild: ∼20%, intermediate: ∼24%, severe: by 2.5 times), and vascular condition (mild: ∼35%, intermediate: ∼14%, severe: ∼ 9%). However, nonoverlapping range of CDP allowed better delineation of stenosis severities irrespective of diameter and vascular condition.

References

1.
Kern
,
M. J.
,
Lerman
,
A.
,
Bech
,
J.-W.
,
De Bruyne
,
B.
,
Eeckhout
,
E.
,
Fearon
,
W. F.
,
Higano
,
S. T.
,
Lim
,
M. J.
,
Meuwissen
,
M.
,
Piek
,
J. J.
,
Pijls
,
N. H. J.
,
Siebes
,
M.
, and
Spaan
,
J. A. E.
,
2006
, “
Physiological Assessment of Coronary Artery Disease in the Cardiac Catheterization Laboratory
,”
Circulation
,
114
(
12
), pp.
1321
1341
.10.1161/CIRCULATIONAHA.106.177276
2.
Tobis
,
J.
,
Azarbal
,
B.
, and
Slavin
,
L.
,
2007
, “
Assessment of Intermediate Severity Coronary Lesions in the Catheterization Laboratory
,”
J. Am. Coll. Cardiol.
,
49
(
8
), pp.
839
848
.10.1016/j.jacc.2006.10.055
3.
Bradley
,
A. J.
, and
Alpert
,
J. S.
,
1991
, “
Coronary Flow Reserve
,”
Am. Heart J.
,
122
(
4, Part 1
), pp.
1116
1128
.10.1016/0002-8703(91)90480-6
4.
Klocke
,
F. J.
,
1987
, “
Measurements of Coronary Flow Reserve: Defining Pathophysiology Versus Making Decisions About Patient Care
,”
Circulation
,
76
(
6
), pp.
1183
1189
.10.1161/01.CIR.76.6.1183
5.
Pijls
,
N. H.
,
van Son
,
J. A.
,
Kirkeeide
,
R. L.
,
De Bruyne
,
B.
, and
Gould
,
K. L.
,
1993
, “
Experimental Basis of Determining Maximum Coronary, Myocardial, and Collateral Blood Flow by Pressure Measurements for Assessing Functional Stenosis Severity Before and After Percutaneous Transluminal Coronary Angioplasty
,”
Circulation
,
87
(
4
), pp.
1354
1367
.10.1161/01.CIR.87.4.1354
6.
Banerjee
,
R. K.
,
Ashtekar
,
K. D.
,
Helmy
,
T. A.
,
Effat
,
M. A.
,
Back
,
L. H.
, and
Khoury
,
S. F.
,
2008
, “
Hemodynamic Diagnostics of Epicardial Coronary Stenoses: In-Vitro Experimental and Computational Study
,”
Biomed. Eng.
,
7
, p.
24
.10.1186/1475-925X-7-24
7.
Dodge
,
J. T.
,
Brown
,
B. G.
,
Bolson
,
E. L.
, and
Dodge
,
H. T.
,
1992
, “
Lumen Diameter of Normal Human Coronary Arteries. Influence of Age, Sex, Anatomic Variation, and Left Ventricular Hypertrophy or Dilation
,”
Circulation
,
86
(
1
), pp.
232
246
.10.1161/01.CIR.86.1.232
8.
Roy
,
A. S.
,
Banerjee
,
R. K.
,
Back
,
L. H.
,
Back
,
M. R.
,
Khoury
,
S.
, and
Millard
,
R. W.
,
2005
, “
Delineating the Guide-Wire Flow Obstruction Effect in Assessment of Fractional Flow Reserve and Coronary Flow Reserve Measurements
,”
Am. J. Physiol.
,
289
(
1
), pp.
H392
H397
.10.1152/ajpheart.00798.2004
9.
Banerjee
,
R. K.
,
Back
,
L. H.
,
Back
,
M. R.
, and
Cho
,
Y. I.
,
1999
, “
Catheter Obstruction Effect on Pulsatile Flow Rate–Pressure Drop During Coronary Angioplasty
,”
ASME J. Biomech. Eng.
,
121
(
3
), pp.
281
289
.10.1115/1.2798321
10.
Banerjee
,
R. K.
,
Back
,
L. H.
,
Back
,
M. R.
, and
Cho
,
Y. I.
,
2000
, “
Physiological Flow Simulation in Residual Human Stenoses After Coronary Angioplasty
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
310
320
.10.1115/1.1287157
11.
Banerjee
,
R. K.
,
Back
,
L. H.
,
Back
,
M. R.
, and
Cho
,
Y. I.
,
2003
, “
Physiological Flow Analysis in Significant Human Coronary Artery Stenoses
,”
Biorheology
,
40
(
4
), pp.
451
476
.
12.
Patel
,
B.
, and
Fisher
,
M.
,
2010
, “
Therapeutic Advances in Myocardial Microvascular Resistance: Unravelling the Enigma
,”
Pharmacol. Therapeut.
,
127
(
2
), pp.
131
147
.10.1016/j.pharmthera.2010.04.014
13.
Camici
,
P. G.
, and
Crea
,
F.
,
2007
, “
Coronary Microvascular Dysfunction
,”
New Eng. J. Med.
,
356
(
8
), pp.
830
840
.10.1056/NEJMra061889
14.
Chamuleau
,
S. A.
,
Siebes
,
M.
,
Meuwissen
,
M.
,
Koch
,
K. T.
,
Spaan
,
J. A.
, and
Piek
,
J. J.
,
2003
, “
Association Between Coronary Lesion Severity and Distal Microvascular Resistance in Patients With Coronary Artery Disease
,”
Am. J. Physiol.
,
285
(
5
), pp.
H2194
H2200
.10.1152/ajpheart.01021.2002
15.
Kloner
,
R. A.
,
Rude
,
R. E.
,
Carlson
,
N.
,
Maroko
,
P. R.
,
DeBoer
,
L. W.
, and
Braunwald
,
E.
,
1980
, “
Ultrastructural Evidence of Microvascular Damage and Myocardial Cell Injury After Coronary Artery Occlusion: Which Comes First?
,”
Circulation
,
62
(
5
), pp.
945
952
.10.1161/01.CIR.62.5.945
16.
Peelukhana
,
S. V.
,
Banerjee
,
R. K.
,
Kolli
,
K. K.
,
Effat
,
M. A.
,
Helmy
,
T. A.
,
Leesar
,
M. A.
,
Schneeberger
,
E. W.
,
Succop
,
P.
,
Gottliebson
,
W.
, and
Irif
,
A.
,
2012
, “
Effect of Heart Rate on Hemodynamic Endpoints Under Concomitant Microvascular Disease In A Porcine Model
,”
Am. J. Physiol.
,
302
(
8
), pp.
H1563
H1573
.10.1152/ajpheart.01042.2011
17.
Aarnoudse
,
W.
,
Fearon
,
W. F.
,
Manoharan
,
G.
,
Geven
,
M.
,
van de Vosse
,
F.
,
Rutten
,
M.
,
De Bruyne
,
B.
, and
Pijls
,
N. H.
,
2004
, “
Epicardial Stenosis Severity Does Not Affect Minimal Microcirculatory Resistance
,”
Circulation
,
110
(
15
), pp.
2137
2142
.10.1161/01.CIR.0000143893.18451.0E
18.
Marzilli
,
M.
,
2007
, “
European Society of Cardiology Working Groups. Working Group 6: Coronary Pathophysiology and Microcirculation. Interview by Emma Baines
,”
Circulation
,
115
(
23
), pp.
f117
f118
10.1161/01.CIR.0000143893.18451.0E.
19.
Meuwissen
,
M.
,
Chamuleau
,
S. A.
,
Siebes
,
M.
,
Schotborgh
,
C. E.
,
Koch
,
K. T.
,
de Winter
,
R. J.
,
Bax
,
M.
,
de Jong
,
A.
,
Spaan
,
J. A.
, and
Piek
,
J. J.
,
2001
, “
Role of Variability in Microvascular Resistance on Fractional Flow Reserve and Coronary Blood Flow Velocity Reserve in Intermediate Coronary Lesions
,”
Circulation
,
103
(
2
), pp.
184
187
.10.1161/01.CIR.103.2.184
20.
Wilson
,
R. F.
,
Johnson
,
M. R.
,
Marcus
,
M. L.
,
Aylward
,
P. E.
,
Skorton
,
D. J.
,
Collins
,
S.
, and
White
,
C. W.
,
1988
, “
The Effect of Coronary Angioplasty on Coronary Flow Reserve
,”
Circulation
,
77
(
4
), pp.
873
885
.10.1161/01.CIR.77.4.873
21.
Ashtekar
,
K. D.
,
Back
,
L. H.
,
Khoury
,
S. F.
, and
Banerjee
,
R. K.
,
2007
, “
In Vitro Quantification of Guidewire Flow-Obstruction Effect in Model Coronary Stenoses for Interventional Diagnostic Procedure
,”
J. Med. Devices
,
1
(
3
), p.
185
.10.1115/1.2776336
22.
Banerjee
,
R. K.
,
Back
,
L. H.
, and
Back
,
M. R.
,
2003
, “
Effects of Diagnostic Guidewire Catheter Presence on Translesional Hemodynamic Measurements Across Significant Coronary Artery Stenoses
,”
Biorheology
,
40
(
6
), pp.
613
635
.
23.
Peelukhana
,
S. V.
,
Back
,
L. H.
, and
Banerjee
,
R. K.
,
2009
, “
Influence of Coronary Collateral Flow on Coronary Diagnostic Parameters: An In Vitro Study
,”
J. Biomech.
,
42
(
16
), pp.
2753
2759
.10.1016/j.jbiomech.2009.08.013
24.
Brookshier
,
K. A.
, and
Tarbell
,
J. M.
,
1993
, “
Evaluation of a Transparent Blood Analog Fluid: Aqueous Xanthan Gum/Glycerin
,”
Biorheology
,
30
(
2
), pp.
107
116
.
25.
Bache
,
R. J.
, and
Schwartz
,
J. S.
,
1982
, “
Effect of Perfusion Pressure Distal to a Coronary Stenosis on Transmural Myocardial Blood Flow
,”
Circulation
,
65
(
5
), pp.
928
935
.10.1161/01.CIR.65.5.928
26.
Hundley
,
W. G.
,
Lange
,
R. A.
,
Clarke
,
G. D.
,
Meshack
,
B. M.
,
Payne
,
J.
,
Landau
,
C.
,
McColl
,
R.
,
Sayad
,
D. E.
,
Willett
,
D. L.
,
Willard
,
J. E.
,
Hillis
,
L. D.
, and
Peshock
,
R. M.
,
1996
, “
Assessment of Coronary Arterial Flow and Flow Reserve in Humans With Magnetic Resonance Imaging
,”
Circulation
,
93
(
8
), pp.
1502
1508
.10.1161/01.CIR.93.8.1502
27.
Kessler
,
W.
,
Moshage
,
W.
,
Galland
,
A.
,
Zink
,
D.
,
Achenbach
,
S.
,
Nitz
,
W.
,
Laub
,
G.
, and
Bachmann
,
K.
,
1998
, “
Assessment of Coronary Blood Flow in Humans Using Phase Difference MR Imaging. Comparison With Intracoronary Doppler Flow Measurement
,”
Int. J. Cardiac Imag.
,
14
(
3
), pp.
179
186
; discussion pp. 187–179.10.1023/A:1005976705707
28.
Downey
,
J. M.
, and
Kirk
,
E. S.
,
1975
, “
Inhibition of Coronary Blood Flow by a Vascular Waterfall Mechanism
,”
Circ. Res.
,
36
(
6
), pp.
753
760
.10.1161/01.RES.36.6.753
29.
van de Hoef
,
T. P.
,
Nolte
,
F.
,
Rolandi
,
M. C.
,
Piek
,
J. J.
,
van den Wijngaard
,
J. P. H. M.
,
Spaan
,
J. A. E.
, and
Siebes
,
M.
,
2012
, “
Coronary Pressure-Flow Relations as Basis for the Understanding of Coronary Physiology
,”
J. Mol. Cellular Cardiol.
,
52
(
4
), pp.
786
793
.10.1016/j.yjmcc.2011.07.025
30.
Van Herck
,
P. L.
,
Carlier
,
S. G.
,
Claeys
,
M. J.
,
Haine
,
S. E.
,
Gorissen
,
P.
,
Miljoen
,
H.
,
Bosmans
,
J. M.
, and
Vrints
,
C. J.
,
2007
, “
Coronary Microvascular Dysfunction After Myocardial Infarction: Increased Coronary Zero Flow Pressure Both in the Infarcted and in the Remote Myocardium is Mainly Related to Left Ventricular Filling Pressure
,”
Heart
,
93
(
10
), pp.
1231
1237
.10.1136/hrt.2006.100818
31.
Claeys
,
M. J.
,
Vrints
,
C. J.
,
Bosmans
,
J.
,
Krug
,
B.
,
Blockx
,
P. P.
, and
Snoeck
,
J. P.
,
1996
, “
Coronary Flow Reserve During Coronary Angioplasty in Patients With a Recent Myocardial Infarction: Relation to Stenosis and Myocardial Viability
,”
J. Am. College Cardiol.
,
28
(
7
), pp.
1712
1719
.10.1016/S0735-1097(96)00386-5
32.
Gosselin
,
R. E.
, and
Kaplow
,
S. M.
,
1991
, “
Venous Waterfalls in Coronary Circulation
,”
J. Theor. Biol.
,
149
(
2
), pp.
265
279
.10.1016/S0022-5193(05)80281-4
33.
Back
,
L. H.
,
Kwack
,
E. Y.
, and
Back
,
M. R.
,
1996
, “
Flow Rate-Pressure Drop Relation in Coronary Angioplasty: Catheter Obstruction Effect
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
83
89
.10.1115/1.2795949
34.
Brown
,
B. G.
,
Bolson
,
E. L.
, and
Dodge
,
H. T.
,
1984
, “
Dynamic Mechanisms in Human Coronary Stenosis
,”
Circulation
,
70
(
6
), pp.
917
922
.10.1161/01.CIR.70.6.917
35.
Gould
,
K. L.
,
1978
, “
Pressure-Flow Characteristics of Coronary Stenoses in Unsedated Dogs at Rest and During Coronary Vasodilation
,”
Circ. Res.
,
43
(
2
), pp.
242
253
.10.1161/01.RES.43.2.242
36.
Alpert
,
J. S.
,
Thygesen
,
K.
,
Antman
,
E.
, and
Bassand
,
J. P.
,
2000
, “
Myocardial Infarction Redefined–A Consensus Document of the Joint European Society of Cardiology/American College of Cardiology Committee for the Redefinition of Myocardial Infarction
,”
J. Am. Coll. Cardiol.
,
36
(
3
), pp.
959
969
.10.1016/S0735-1097(00)00804-4
37.
Claeys
,
M. J.
,
Bosmans
,
J. M.
,
Hendrix
,
J.
, and
Vrints
,
C. J.
,
2001
, “
Reliability of Fractional Flow Reserve Measurements in Patients With Associated Microvascular Dysfunction: Importance of Flow on Translesional Pressure Gradient
,”
Catheterization And Cardiovascular Interventions: Official Journal of the Society for Cardiac Angiography & Interventions
,
54
(
4
), pp.
427
434
.
38.
McClish
,
J. C.
,
Ragosta
,
M.
,
Powers
,
E. R.
,
Barringhaus
,
K. G.
,
Gimple
,
L. W.
,
Fischer
,
J.
,
Garnett
,
J.
,
Siadaty
,
M.
,
Sarembock
, I
. J.
, and
Samady
,
H.
,
2004
, “
Effect of Acute Myocardial Infarction on the Utility of Fractional Flow Reserve for the Physiologic Assessment of the Severity of Coronary Artery Narrowing
,”
Am. J. Cardiol.
,
93
(
9
), pp.
1102
1106
.10.1016/j.amjcard.2004.01.035
39.
Baumgartner
,
H.
,
Schima
,
H.
,
Tulzer
,
G.
, and
Kuhn
,
P.
,
1993
, “
Effect of Stenosis Geometry on the Doppler-Catheter Gradient Relation In Vitro: A Manifestation of Pressure Recovery
,”
J. Am. Coll. Cardiol.
,
21
(
4
), pp.
1018
1025
.10.1016/0735-1097(93)90362-5
40.
Seeley
,
B. D.
, and
Young
,
D. F.
,
1976
, “
Effect of Geometry on Pressure Losses Across Models of Arterial Stenoses
,”
J. Biomech.
,
9
(
7
), pp.
439
448
.10.1016/0021-9290(76)90086-5
41.
Mates
,
R. E.
,
Gupta
,
R. L.
,
Bell
,
A. C.
, and
Klocke
,
F. J.
,
1978
, “
Fluid Dynamics of Coronary Artery Stenosis
,”
Circ. Res.
,
42
(
1
), pp.
152
162
.10.1161/01.RES.42.1.152
42.
Young
,
D. F.
,
1979
, “
Fluid Mechanics of Arterial Stenoses
,”
ASME J. Biomech. Eng.
,
101
(
3
), pp.
157
175
.10.1115/1.3426241
43.
May
,
A. G.
,
De Weese
,
J. A.
, and
Rob
,
C. G.
,
1963
, “
Hemodynamic Effects of Arterial Stenosis
,”
Surgery
,
53
, pp.
513
524
.
44.
Feldman
,
R. L.
,
Nichols
,
W. W.
,
Pepine
,
C. J.
, and
Conti
,
C. R.
,
1978
, “
Hemodynamic Significance of the Length of a Coronary Arterial Narrowing
,”
Am. J. Cardiol.
,
41
(
5
), pp.
865
871
.10.1016/0002-9149(78)90726-9
45.
Drexler
,
H.
,
Zeiher
,
A. M.
,
Wollschläger
,
H.
,
Meinertz
,
T.
,
Just
,
H.
, and
Bonzel
,
T.
,
1989
, “
Flow-Dependent Coronary Artery Dilatation in Humans
,”
Circulation
,
80
(
3
), pp.
466
474
.10.1161/01.CIR.80.3.466
46.
Vita
,
J. A.
,
Treasure
,
C. B.
,
Ganz
,
P.
,
Cox
,
D. A.
,
David Fish
,
R.
, and
Selwyn
,
A. P.
,
1989
, “
Control of Shear Stress in the Epicardial Coronary Arteries of Humans: Impairment by Atherosclerosis
,”
J. Am. College Cardiol.
,
14
(
5
), pp.
1193
1199
.10.1016/0735-1097(89)90416-6
47.
Konala
,
B. C.
,
Das
,
A.
, and
Banerjee
,
R. K.
,
2011
, “
Influence of Arterial Wall-Stenosis Compliance on the Coronary Diagnostic Parameters
,”
J. Biomech.
,
44
(
5
), pp.
842
847
.10.1016/j.jbiomech.2010.12.011
48.
Cho
,
Y. I.
, and
Kensey
,
K. R.
,
1991
, “
Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel. Part 1: Steady Flows
,”
Biorheology
,
28
(
3–4
), pp.
241
262
.
49.
Daripa
,
P.
, and
Dash
,
R. K.
,
2002
, “
A Numerical Study of Pulsatile Blood Flow in an Eccentric Catheterized Artery Using a Fast Algorithm
,”
J. Eng. Math.
,
42
, pp.
1
22
.10.1023/A:1014332225766
50.
Nanto
,
S.
,
Masuyama
,
T.
,
Hori
,
M.
,
Shimonagata
,
T.
,
Ohara
,
T.
, and
Kubori
,
S.
,
1996
, “
Zero Flow Pressure in Human Coronary Circulation
,”
Angiology
,
47
(
2
), pp.
115
122
.10.1177/000331979604700202
51.
Dole
,
W. P.
,
1987
, “
Autoregulation of the Coronary Circulation
,”
Prog. Cardiovasc. Diseases
,
29
(
4
), pp.
293
323
.10.1016/S0033-0620(87)80005-1
You do not currently have access to this content.