To properly simulate the behavior of biological structures through computer modeling, there exists a need to describe parameters that vary locally. These parameters can be obtained either from literature or from experimental data and they are often assigned to regions in the model as lumped values. Furthermore, parameter values may be obtained on a representative case and may not be available for each specific modeled organ. We describe a semiautomated technique to assign detailed maps of local tissue properties to a computational model of a biological structure. We applied the method to the left atrium of the heart. The orientation of myocytes in the tissue as obtained from histologic analysis was transferred to the 3D model of a porcine left atrium. Finite element method (FEM) dynamic simulations were performed by using an isotropic, neo-Hookean, constitutive model first, then adding an anisotropic, cardiomyocyte oriented, Fung-type component. Results showed higher stresses for the anisotropic material model corresponding to lower stretches in the cardiomyocyte directions. The same methodology can be applied to transfer any map of parameters onto a discretized finite element model.

References

1.
Fang
,
S.
,
2000
, “
Volume Morphing and Rendering-An Integrated Approach
,”
Comput. Aided Geom. Des.
,
17
(
1
), pp.
59
81
.10.1016/S0167-8396(99)00039-4
2.
Cao
,
Y.
,
Miller
,
M.
,
Winslow
,
R.
, and
Younes
,
L.
,
2005
, “
Large Deformation Diffeomorphic Metric Mapping of Fiber Orientations
,”
In Tenth IEEE International Conference on Computer Vision (ICCV’05)
, Vol. 1, IEEE, pp.
1379
1386
, Vol. 2.
3.
Beier
,
T.
, and
Neely
,
S.
,
1992
, “
Feature-Based Image Metamorphosis
,”
ACM SIGGRAPH Comput. Graph.
,
26
(
2
), pp.
35
42
.10.1145/142920.134003
4.
Bellini
,
C.
, and
Di Martino
,
E.
,
2012
, “
A Mechanical Characterization of the Porcine Atria at the Healthy Stage and After Ventricular Tachypacing
,”
J. Biomech. Eng.
,
134
(
2
), pp.
2755
2760
.10.1115/1.4006026
5.
Di Martino
,
E.
,
Bellini
,
C.
, and
Schwartzman
,
D.
,
2011
, “
In Vivo Porcine Left Atrial Wall Stress: Computational Model
,”
J. Biomech.
,
44
, pp.
2589
2594
.10.1016/j.jbiomech.2011.08.023
6.
Papez
,
J.
,
1920
, “
Heart Musculature of the Atria
,”
Am. J. Anat.
,
27
, pp.
255
285
.10.1002/aja.1000270302
7.
Ho
,
S.
,
Sanchez-Quintana
,
D.
,
Cabrera
,
J.
, and
Anderson
,
R.
,
1999
, “
Anatomy of the Left Atrium: Implications for Radiofrequency Ablation of Atrial Fibrillation
,”
J. Cardiovasc. Electrophysiol.
,
10
(
11
), pp.
1525
1533
.10.1111/j.1540-8167.1999.tb00211.x
8.
Hallquist
,
J.
,
2010
, “
LS-DYNA Keyword User Manual 971 R5 Beta
,” Livermore Software Technology Corporation, I(May). Available at: http://www.dynasupport.com/manuals/ls-dyna-manuals/LS-DYNA_Keyword_Manual_971_Rev5-beta.pdf
9.
Fung
,
Y.
,
1979
, “
Pseudoelasticity of Arteries and the Choice of its Mathematical Expression of Applied Mechanics
,”
Am. J. Physiol.
,
237
(
5
), pp.
H620
H631
. Available at: http://ajpheart.physiology.org/content/237/5/H620.long
10.
Crick
,
S.
,
Sheppard
,
M.
,
Ho
,
S.
,
Gebstein
,
L.
, and
Anderson
,
R.
,
1998
, “
Anatomy of the Pig Heart: Comparisons With Normal Human Cardiac Structure
,”
J. Anat.
,
193
(
1
), pp.
105
119
.10.1046/j.1469-7580.1998.19310105.x
You do not currently have access to this content.