Hydrostatic pressure-driven flows through soft tissues and gels cause deformations of the solid network to occur, due to drag from the flowing fluid. This phenomenon occurs in many contexts including physiological flows and infusions through soft tissues, in mechanically stimulated engineered tissues, and in direct permeation measurements of hydraulic permeability. Existing theoretical descriptions are satisfactory in particular cases, but none provide a description which is easy to generalize for the design and interpretation of permeation experiments involving a range of different boundary conditions and gel properties. Here a theoretical description of flow-induced permeation is developed using a relatively simple approximate constitutive law for strain-dependent permeability and an assumed constant elastic modulus, using dimensionless parameters which emerge naturally. Analytical solutions are obtained for relationships between fundamental variables, such as flow rate and pressure drop, which were not previously available. Guidelines are provided for assuring that direct measurements of hydraulic permeability are performed accurately, and suggestions emerge for alternative measurement protocols. Insights obtained may be applied to interpretation of flow-induced deformation and related phenomena in many contexts.

References

1.
Johnson
,
M.
, and
Tarbell
,
J. M.
,
2001
, “
A Biphasic, Anisotropic Model of the Aortic Wall
,”
ASME J. Biomech. Eng.
,
123
(
1
), pp.
52
57
.10.1115/1.1339817
2.
McGuire
,
S.
,
Zaharoff
,
D.
, and
Yuan
,
F.
,
2006
, “
Nonlinear Dependence of Hydraulic Conductivity on Tissue Deformation During Intratumoral Infusion
,”
Ann. Biomed. Eng.
,
34
(
7
), pp.
1173
1181
.10.1007/s10439-006-9136-2
3.
Chen
,
X.
, and
Sarntinoranont
,
M.
,
2007
, “
Biphasic Finite Element Model of Solute Transport for Direct Infusion Into Nervous Tissue
,”
Ann. Biomed. Eng.
,
35
(
12
), pp.
2145
2158
.10.1007/s10439-007-9371-1
4.
Serpooshan
,
V.
,
Quinn
,
T. M.
,
Muja
,
N.
, and
Nazhat
,
S. N.
,
2011
, “
Characterization and Modelling of a Dense Lamella Formed During Self Compression of Fibrillar Collagen Gels: Implications for Biomimetic Scaffolds
,”
Soft Matter
,
7
(
6
), pp.
2918
2926
.10.1039/c0sm00691b
5.
Raimondi
,
M. T.
,
Moretti
,
M.
,
Cioffi
,
M.
,
Giordano
,
C.
,
Boschetti
,
F.
,
Laganà
,
K.
, and
Pietrabissa
,
R.
,
2006
, “
The Effect of Hydrodynamic Shear on 3D Engineered Chondrocyte Systems Subject to Direct Perfusion
,”
Biorheology
,
43
(
3–4
), pp.
215
222
.
6.
Lai
,
W. M.
, and
Mow
,
V. C.
,
1980
, “
Drag-Induced Compression of Articular Cartilage During a Permeation Experiment
,”
Biorheology
,
17
(
1–2
), pp.
111
123
.
7.
Mansour
,
J. M.
, and
Mow
,
V. C.
,
1976
, “
Permeability of Articular-Cartilage Under Compressive Strain and at High-Pressures
,”
J. Bone Joint Surg.
,
58
(
4
), pp.
509
516
.
8.
McCutchen
,
C. W.
,
1962
, “
The Frictional Properties of Animal Joints
,”
Wear
,
5
(
1
), pp.
1
17
.10.1016/0043-1648(62)90176-X
9.
Reynaud
,
B.
, and
Quinn
,
T. M.
,
2006
, “
Anisotropic Hydraulic Permeability in Compressed Articular Cartilage
,”
J. Biomech.
,
39
(
1
), pp.
131
137
.10.1016/j.jbiomech.2004.10.015
10.
Gu
,
W. Y.
,
Mao
,
X. G.
,
Foster
,
R. J.
,
Weidenbaum
,
M.
,
Mow
,
V. C.
, and
Rawlins
,
B. A.
,
1999
, “
The Anisotropic Hydraulic Permeability of Human Lumbar Anulus Fibrosus Influence of Age, Degeneration, Direction, and Water Content
,”
Spine
,
24
(
23
), pp.
2449
2455
.10.1097/00007632-199912010-00005
11.
Heneghan
,
P.
, and
Riches
,
P. E.
,
2008
, “
Determination of the Strain-Dependent Hydraulic Permeability of the Compressed Bovine Nucleus Pulposus
,”
J. Biomech.
,
41
(
4
), pp.
903
906
.10.1016/j.jbiomech.2007.11.014
12.
Albro
,
M. B.
,
Li
,
R.
,
Banerjee
,
R. E.
,
Hung
,
C. T.
, and
Ateshian
,
G. A.
,
2010
, “
Validation of Theoretical Framework Explaining Active Solute Uptake in Dynamically Loaded Porous Media
,”
J. Biomech.
,
43
(
12
), pp.
2267
2273
.10.1016/j.jbiomech.2010.04.041
13.
McCarty
,
W. J.
, and
Johnson
,
M.
,
2007
, “
The Hydraulic Conductivity of Matrigel™
,”
Biorheology
,
44
(
5–6
), pp.
303
317
.
14.
Chin
,
H.
,
Khayat
,
C. G.
, and
Quinn
,
T. M.
,
2011
, “
Improved Characterization of Cartilage Mechanical Properties Using a Combination of Stress Relaxation and Creep
,”
J. Biomech.
,
44
(
1
), pp.
198
201
.10.1016/j.jbiomech.2010.09.006
15.
Lai
,
W. M.
,
Mow
,
V. C.
,
Sun
,
D. D.
, and
Ateshian
,
G. A.
,
2000
, “
On the Electric Potentials Inside a Charged Soft Hydrated Biological Tissue: Streaming Potential Versus Diffusion Potential
,”
ASME J. Biomech. Eng.
,
122
(
4
), pp.
336
346
.10.1115/1.1286316
16.
Holmes
,
M. H.
, and
Mow
,
V. C.
,
1990
, “
The Nonlinear Characteristics of Soft Gels and Hydrated Connective Tissues in Ultrafiltration
,”
J. Biomech.
,
23
(
11
), pp.
1145
1156
.10.1016/0021-9290(90)90007-P
17.
Mow
,
V. C.
, and
Mansour
,
J. M.
,
1977
, “
The Nonlinear Interaction Between Cartilage Deformation and Interstitial Fluid Flow
,”
J. Biomech.
,
10
(
1
), pp.
31
39
.10.1016/0021-9290(77)90027-6
18.
Boschetti
,
F.
,
Gervaso
,
F.
,
Pennati
,
G.
,
Peretti
,
G. M.
,
Vena
,
P.
, and
Dubini
,
G.
,
2006
, “
Poroelastic Numerical Modelling of Natural and Engineered Cartilage Based on in vitro Tests
,”
Biorheology
,
43
(
3–4
), pp.
235
247
.
19.
Argoubi
,
M.
, and
Shirazi-Adl
,
A.
,
1996
, “
Poroelastic Creep Response Analysis of a Lumbar Motion Segment in Compression
,”
J. Biomech.
,
29
(
10
), pp.
1331
1339
.10.1016/0021-9290(96)00035-8
20.
Gu
,
W. Y.
,
Yao
,
H.
,
Huang
,
C. Y.
, and
Cheung
,
H. S.
,
2003
, “
New Insight Into Deformation-Dependent Hydraulic Permeability of Gels and Cartilage, and Dynamic Behavior of Agarose Gels in Confined Compression
,”
J. Biomech.
,
36
(
4
), pp.
593
598
.10.1016/S0021-9290(02)00437-2
21.
Happel
,
J.
,
1959
, “
Viscous Flow Relative to Arrays of Cylinders
,”
AIChE J.
,
5
(
2
), pp.
174
177
.10.1002/aic.690050211
22.
Quinn
,
T. M.
,
Dierickx
,
P.
, and
Grodzinsky
,
A. J.
,
2001
, “
Glycosaminoglycan Network Geometry May Contribute to Anisotropic Hydraulic Permeability in Cartilage Under Compression
,”
J. Biomech.
,
34
(
11
), pp.
1483
1490
.10.1016/S0021-9290(01)00103-8
23.
Riches
,
P. E.
,
Dhillon
,
N.
,
Lotz
,
J.
,
Woods
,
A. W.
, and
McNally
,
D. S.
,
2002
, “
The Internal Mechanics of the Intervertebral Disc Under Cyclic Loading
,”
J. Biomech.
,
35
(
9
), pp.
1263
1271
.10.1016/S0021-9290(02)00070-2
24.
Abramowitz
,
M.
, and
Stegun
,
I.
,
1965
,
Handbook of Mathematical Functions
,
Dover
,
New York
.
25.
Démarteau
,
O.
,
Pillet
,
L.
,
Inaebnit
,
A.
,
Borens
,
O.
, and
Quinn
,
T. M.
,
2006
, “
Biomechanical Characterization and in vitro Mechanical Injury of Elderly Human Femoral Head Cartilage: Comparison to Adult Bovine Humeral Head Cartilage
,”
Osteoarth. Cartilage Osteoarth. Res. Soc.
,
14
(
6
), pp.
589
596
.10.1016/j.joca.2005.12.011
26.
Morel
,
V.
, and
Quinn
,
T. M.
,
2004
, “
Cartilage Injury by Ramp Compression Near the Gel Diffusion Rate
,”
J. Orthopaed. Res.
,
22
(
1
), pp.
145
151
.10.1016/S0736-0266(03)00164-5
27.
Ma
,
S. S.
,
Kassinos
,
C.
, and
Kassinos
,
D.
,
2009
, “
Direct Simulation of the Limiting Flux: I. Interpretation of the Experimental Results
,”
J. Membrane Sci.
,
337
, pp.
81
91
.10.1016/j.memsci.2009.03.031
28.
Wijmans
,
J. G.
,
Nakao
,
S.
, and
Smolders
,
C. A.
,
1984
, “
Flux Limitation in Ultrafiltration: Osmotic Pressure Model and Gel Layer Model
,”
J. Membrane Sci.
,
20
, pp.
115
124
.10.1016/S0376-7388(00)81327-7
You do not currently have access to this content.