As the average age of the population has increased, the incidence of age-related bone fracture has also increased. While some of the increase of fracture incidence with age is related to loss of bone mass, a significant part of the risk is unexplained and may be caused by changes in intrinsic material properties of the hard tissue. This investigation focused on understanding how changes to the intrinsic damage properties affect bone fragility. We hypothesized that the intrinsic (μm) damage properties of bone tissue strongly and nonlinearly affect mechanical behavior at the apparent (whole tissue, cm) level. The importance of intrinsic properties on the apparent level behavior of trabecular bone tissue was investigated using voxel based finite element analysis. Trabecular bone cores from human T12 vertebrae were scanned using microcomputed tomography (μCT) and the images used to build nonlinear finite element models. Isotropic and initially homogenous material properties were used for all elements. The elastic modulus (Ei) of individual elements was reduced with a secant damage rule relating only principal tensile tissue strain to modulus damage. Apparent level resistance to fracture as a function of changes in the intrinsic damage properties was measured using the mechanical energy to failure per unit volume (apparent toughness modulus, Wa) and the apparent yield strength (σay, calculated using the 0.2% offset). Intrinsic damage properties had a profound nonlinear effect on the apparent tissue level mechanical response. Intrinsic level failure occurs prior to apparent yield strength (σay). Apparent yield strength (σay) and toughness vary strongly (1200% and 400%, respectively) with relatively small changes in the intrinsic damage behavior. The range of apparent maximum stresses predicted by the models was consistent with those measured experimentally for these trabecular bone cores from the experimental axial compressive loading (experimental: σmax = 3.0–4.3 MPa; modeling: σmax = 2–16 MPa). This finding differs significantly from previous studies based on nondamaging intrinsic material models. Further observations were that this intrinsic damage model reproduced important experimental apparent level behaviors including softening after peak load, microdamage accumulation before apparent yield (0.2% offset), unload softening, and sensitivity of the apparent level mechanical properties to variability of the intrinsic properties.
Skip Nav Destination
e-mail: dpfyhrie@ucdavis.edu
Article navigation
January 2013
Research-Article
The Importance of Intrinsic Damage Properties to Bone Fragility: A Finite Element Study
M. R. Hardisty,
M. R. Hardisty
Lawrence J. Ellison Musculoskeletal
Research Center
,Department of Orthopaedic Surgery
,University of California
,Davis, Sacramento, CA 95817
;Biomedical Engineering
,College of Engineering
,University of California
,Davis, Davis, CA 95616
Search for other works by this author on:
R. Zauel,
R. Zauel
Bone and Joint Center
,Department of Orthopaedic Surgery
,Henry Ford Hospital
,Detroit, MI 48202
Search for other works by this author on:
S. M. Stover,
S. M. Stover
J. D. Wheat Veterinary Orthopedic
Research Laboratory
,School of Veterinary Medicine
,University of California
,Davis, Davis, CA 95616
Search for other works by this author on:
D. P. Fyhrie
e-mail: dpfyhrie@ucdavis.edu
D. P. Fyhrie
Lawrence J. Ellison Musculoskeletal
Research Center
,Department of Orthopaedic Surgery
,University of California
,Davis, Sacramento, CA 95817
;Biomedical Engineering
,College of Engineering
,University of California
,Davis, Davis, CA 95616
e-mail: dpfyhrie@ucdavis.edu
Search for other works by this author on:
M. R. Hardisty
Lawrence J. Ellison Musculoskeletal
Research Center
,Department of Orthopaedic Surgery
,University of California
,Davis, Sacramento, CA 95817
;Biomedical Engineering
,College of Engineering
,University of California
,Davis, Davis, CA 95616
R. Zauel
Bone and Joint Center
,Department of Orthopaedic Surgery
,Henry Ford Hospital
,Detroit, MI 48202
S. M. Stover
J. D. Wheat Veterinary Orthopedic
Research Laboratory
,School of Veterinary Medicine
,University of California
,Davis, Davis, CA 95616
D. P. Fyhrie
Lawrence J. Ellison Musculoskeletal
Research Center
,Department of Orthopaedic Surgery
,University of California
,Davis, Sacramento, CA 95817
;Biomedical Engineering
,College of Engineering
,University of California
,Davis, Davis, CA 95616
e-mail: dpfyhrie@ucdavis.edu
Contributed by the Bioengineering Division of ASME for publication in the Journal of Biomechanical Engineering. Manuscript received January 18, 2012; final manuscript received October 5, 2012; accepted manuscript posted November 28, 2012; published online December 27, 2012. Assoc. Editor: Sean S. Kohles.
J Biomech Eng. Jan 2013, 135(1): 011004 (9 pages)
Published Online: December 27, 2012
Article history
Received:
January 18, 2012
Revision Received:
October 5, 2012
Accepted:
November 28, 2012
Citation
Hardisty, M. R., Zauel, R., Stover, S. M., and Fyhrie, D. P. (December 27, 2012). "The Importance of Intrinsic Damage Properties to Bone Fragility: A Finite Element Study." ASME. J Biomech Eng. January 2013; 135(1): 011004. https://doi.org/10.1115/1.4023090
Download citation file:
Get Email Alerts
Related Articles
Quantitative Computed Tomography-Based Finite Element Models of the Human Lumbar Vertebral Body: Effect of Element Size on Stiffness, Damage, and Fracture Strength Predictions
J Biomech Eng (August,2003)
Ash Content Modulation of Torsionally Derived Effective Material Properties in Cortical Mouse Bone
J Biomech Eng (October,2003)
Intermediate Mechanics of Materials
Appl. Mech. Rev (November,2001)
Finite Element Modeling of Microcrack Growth in Cortical Bone
J. Appl. Mech (July,2011)
Related Proceedings Papers
Related Chapters
Novel and Efficient Mathematical and Computational Methods for the Analysis and Architecting of Ultralight Cellular Materials and their Macrostructural Responses
Advances in Computers and Information in Engineering Research, Volume 2
Estimation of K Ic from Slow Bend Precracked Charpy Specimen Strength Ratios
Developments in Fracture Mechanics Test Methods Standardization
STRUCTURAL RELIABILITY ASSESSMENT OF PIPELINE GIRTH WELDS USING GAUSSIAN PROCESS REGRESSION
Pipeline Integrity Management Under Geohazard Conditions (PIMG)