The development of an engineering transitional turbulence model and its subsequent evaluation and validation for some diseased cardiovascular flows have been suggestive of its likely utility in normal aortas. The existence of experimental data from human aortas, acquired in the early 1970s with catheter-mounted hot film velocimeters, provided the opportunity to compare the performance of the model on such flows. A generic human aorta, derived from magnetic resonance anatomical and velocity images of a young volunteer, was used as the basis for varying both Reynolds number (Re) and Womersley parameter (α) to match four experimental data points from human ascending aortas, comprising two with disturbed flow and two with apparently undisturbed flow. Trials were made with three different levels of inflow turbulence intensity (Tu) to find if a single level could represent the four different cases with 4000 < Re < 10,000 and 17 < α < 26. A necessary boundary condition includes the inflow “turbulence” level, and convincing results were obtained for all four cases with inflow Tu = 1.0%, providing additional confidence in the application of the transitional model in flows in larger arteries. The Reynolds-averaged Navier–Stokes (RANS)-based shear stress transport (SST) transitional model is capable of capturing the correct flow state in the human aorta when low inflow turbulence intensity (1.0%) is specified.

References

1.
Levick
,
J. R.
,
2010
,
An Introduction to Cardiovascular Physiology
, 5th ed.,
Hodder Arnold
,
London
.
2.
Tan
,
F. P. P.
,
Torii
,
R.
,
Borghi
,
A.
,
Mohiaddin
,
R. H.
,
Wood
,
N. B.
, and
Xu
,
X. Y.
,
2009
, “
Fluid-Structure Interaction Analysis of Wall Stress and Flow Patterns in a Thoracic Aortic Aneurysm
,”
Int. J. App. Mech.
,
1
, pp.
179
199
.10.1142/S1758825109000095
3.
Ahmed
,
S. A.
, and
Giddens
,
D. P.
,
1984
, “
Pulsatile Poststenotic Flow Studies With Laser Doppler Anemometry
,”
J. Biomech.
,
17
, pp.
695
705
.10.1016/0021-9290(84)90123-4
4.
Ahmed
,
S. A.
,
1998
, “
An Experimental Investigation of Pulsatile Flow Through a Smooth Constriction
,”
Exp. Therm. Fluid Sci.
,
17
, pp.
309
318
.10.1016/S0894-1777(98)00009-0
5.
Tan
,
F. P. P.
,
Soloperto
,
G.
,
Bashford
,
S.
,
Wood
,
N. B.
,
Thom
,
S.
,
Hughes
,
A.
, and
Xu
,
X. Y.
,
2008
, “
Analysis of Flow Disturbance in a Stenosed Carotid Artery Bifurcation Using Two-Equation Transitional and Turbulence Models
,”
ASME J. Biomech. Eng.
,
130
, p.
061008
.10.1115/1.2978992
6.
Stein
,
P. D.
, and
Sabbah
,
H. N.
,
1976
, “
Turbulent Blood Flow in the Ascending Aorta of Humans With Normal and Diseased Aortic Valves
,”
Circ. Res.
,
39
(
1
), pp.
58
65
.10.1161/01.RES.39.1.58
7.
Giddens
,
D. P.
,
Mabon
,
R. F.
, and
Cassanova
,
R. A.
,
1976
, “
Measurements of Disordered Flows Distal to Subtotal Vascular Stenoses in the Thoracic Aortas of Dogs
,”
Circ. Res.
,
39
, pp.
112
119
.10.1161/01.RES.39.1.112
8.
Seed
,
W. A.
, and
Wood
,
N. B.
,
1971
, “
Velocity Patterns in the Aorta
,”
Cardiovasc. Res.
,
971
(
5
), pp.
319
330
.10.1093/cvr/5.3.319
9.
Nerem
,
R. M.
,
Seed
,
W. A.
, and
Wood
,
N. B.
,
1972
, “
Experimental Study of the Velocity Distribution and Transition to Turbulence in Aorta
,”
J. Fluid. Mech.
,
52
, pp.
137
160
.10.1017/S0022112072003003
10.
Parker
,
K. H.
,
1977
, “
Instability in Arterial Blood Flow
,”
Cardiovascular Flow Dynamics and Measurements
,
N. H. C.
Hwang
and
N. A.
Normann
, eds.,
University Park
,
Baltimore
, pp.
633
663
.
11.
Leuprecht
,
A.
,
Kozerke
,
S.
,
Boesiger
,
P.
, and
Perktold
,
K.
,
2003
, “
Blood Flow in the Human Ascending Aorta: A Combined MRI and CFD Study
,”
J. Eng. Math.
,
47
, pp.
387
404
.10.1023/B:ENGI.0000007969.18105.b7
12.
Jin
,
S.
,
Oshinski
,
J.
, and
Giddens
,
D. P.
,
2003
, “
Effects of Wall Motion and Compliance on Flow Patterns in the Ascending Aorta
,”
J. Biomech. Eng.
,
125
, pp.
347
354
.10.1115/1.1574332
13.
Svensson
,
S.
,
Gårdhagen
,
R.
,
Heiberg
,
E.
,
Ebbers
,
T.
,
Loyd
,
D.
,
Länne
,
T.
, and
Karlsson
,
M.
,
2006
, “
Feasibility of Patient Specific Aortic Blood Flow CFD Simulation
,”
Lect. Notes Comput. Sci.
,
4190
, pp.
257
263
.10.1007/11866565
14.
Khanafer
,
K.
, and
Berguer
,
R.
,
2009
, “
Fluid–Structure Interaction Analysis of Turbulent Pulsatile Flow Within a Layered Aortic Wall as Related to Aortic Dissection
,”
J. Biomech.
,
42
, pp.
2642
2648
.10.1016/j.jbiomech.2009.08.010
15.
Benim
,
A. C.
,
Nahavandi
,
A.
,
Assmann
,
A.
,
Schubert
,
D.
,
Feindt
,
P.
, and
Suh
,
S. H.
,
2011
, “
Simulation of Blood Flow in Human Aorta With Emphasis on Outlet Boundary Conditions
,”
Appl. Math. Model.
,
35
, pp.
3175
3188
.10.1016/j.apm.2010.12.022
16.
Menter
,
F.
,
Langtry
,
R.
, and
Volker
,
S.
,
2006
, “
Transition Modelling for General Purpose CFD Codes
,”
Flow, Turbul. Combust.
,
77
, pp.
277
303
.10.1007/s10494-006-9047-1
17.
Wood
,
N. B.
, and
Xu
,
X. Y.
,
2006
, “
Modelling of Haemodynamics in the Cardiovascular System by Integrating Medical Imaging Techniques and Computer Modelling Tool
,”
Multidisciplinary Approaches to Theory in Medicine
,
R.
Paton
and
L.
McNamara
, eds.,
Elsevier
,
New York
, pp.
325
351
.
18.
Barth
,
P. J.
, and
Jesperson
,
D. C.
,
1989
, “
The Design and Application of Upwind Schemes on Unstructured Meshes
,” AIAA Paper No. AIAA-89-0366.
19.
Ferzinger
,
J. H.
, and
Peric
,
M.
,
1999
,
Computational Methods for Fluid Dynamics
, 3rd ed.,
Springer
,
Berlin
.
20.
Hutchinson
,
B. R.
, and
Raithby
,
G. D.
,
1986
, “
A Multigrid Method Based on the Additive Correction Strategy
,”
Numer. Heat Transfer
,
9
, pp.
511
537
.10.1080/10407788608913491
21.
Womersley
,
J. R.
,
1955
, “
Method for the Calculation of Velocity, Rate of Flow and Viscous Drag in Arteries When the Pressure Gradient Is Known
,”
J. Physiol.
,
127
, pp.
553
563
.
22.
Martini
,
F. H.
,
1995
,
Fundamentals of Anatomy and Physiology
, 3rd ed.,
Prentice Hall
,
Englewood Cliffs, NJ
.
23.
Wood
,
N. B.
,
1975
, “
A Method for the Determination and Control of the Frequency Response of the Constant-Temperature Hot-Wire Anemometer
,”
J. Fluid Mech.
,
67
, pp.
769
786
.10.1017/S0022112075000602
24.
Bellhouse
,
B. J.
, and
Rasmussen
,
C. G.
,
1968
, “
Low-Frequency Characteristics of Hot-Film Anemometers
,”
DISA Inf.
,
6
, pp.
3
10
.
25.
Brison
,
J. F.
,
Charnay
,
G.
, and
Compte-Bellot
,
G.
,
1979
, “
Calcul des Transferts Thermiques Entre Film Chaud et Substrat par un Modėle a Deux Dimensions: Prévision de la Réponse Dynamique de Sondes Usuelles
,”
Int. J. Heat Mass Transfer
,
22
, pp.
111
119
.10.1016/0017-9310(79)90103-0
26.
Seed
,
W. A.
, and
Wood
,
N. B.
,
1970
, “
Development and Evaluation of a Hot-Film Velocity Probe for Cardiovascular Studies
,”
Cardiovasc. Res.
,
4
, pp.
253
263
.10.1093/cvr/4.2.253
27.
Wood
,
N. B.
,
1999
, “
Aspects of Fluid Dynamics Applied to the Larger Arteries
,”
J. Theor. Biol.
,
199
, pp.
137
161
.10.1006/jtbi.1999.0953
28.
Arzani
,
A.
,
Dyverfeldt
,
P.
,
Ebbers
,
T.
,
Shadden
,
S. C.
,
2011
, “
In Vivo Validation of Numerical Prediction for Turbulence Intensity in an Aortic Coarctation
,”
Ann. Biomed. Eng.
,
40
, pp.
860
870
.10.1007/s10439-011-0447-6
29.
Akhavan
,
R.
,
Kamm
,
R. D.
, and
Shapiro
,
A. H.
,
1991
, “
An Investigation of Transition to Turbulence in Bounded Oscillatory Stokes Flows—Part I: Experiments
,”
J. Fluid Mech.
,
225
, pp.
395
422
.10.1017/S0022112091002100
30.
Tan
,
F. P. P.
,
Wood
,
N. B.
,
Tabor
,
G.
, and
Xu
,
X. Y.
,
2011
, “
Comparison of LES of Steady Transitional Flow in an Idealized Stenosed Axisymmetric Artery Model With a RANS Transitional Model
,”
ASME J. Biomech. Eng.
,
133
, p.
051001
.10.1115/1.4003782
31.
Bogren
,
H. G.
, and
Buonocore
,
M. H.
,
1999
, “
4D Magnetic Resonance Velocity Mapping of Blood Flow Patterns in the Aorta in Young vs. Elderly Normal Subjects
,”
J. Magn. Reson. Imaging
,
10
, pp.
861
869
.10.1002/(SICI)1522-2586(199911)10:5<861::AID-JMRI35>3.0.CO;2-E
32.
Frydrychowicz
,
A.
,
Berger
,
A.
,
Munoz Del Rio
,
A.
,
Russe
,
M. F.
,
Bock
,
J.
,
Harloff
,
A.
, and
Markl
,
M.
,
2011
, “
Interdependencies of Aortic Arch Secondary Flow Patterns, Geometry, and Age Analysed by 4-Dimensional Phase Contrast Magnetic Resonance Imaging at 3 Tesla
,”
Eur. Radiol.
,
22
, pp.
1122
1130
.10.1007/s00330-011-2353-6
33.
Morbiducci
,
U.
,
Ponzini
,
R.
,
Rizzo
,
G.
,
Cadioli
,
M.
,
Esposito
,
A.
,
De Cobelli
,
F.
,
Del Maschio
,
A.
,
Montevecchi
,
F. M.
, and
Redaelli
,
A.
,
2009
, “
In Vivo Quantification of Helical Blood Flow in Human Aorta by Time-Resolved Three-Dimensional Cine Phase Contrast Magnetic Resonance Imaging
,”
Ann. Biomed. Eng.
,
37
, pp.
516
531
.10.1007/s10439-008-9609-6
You do not currently have access to this content.