Single ventricle heart defects are among the most serious congenital heart diseases, and are uniformly fatal if left untreated. Typically, a three-staged surgical course, consisting of the Norwood, Glenn, and Fontan surgeries is performed, after which the superior vena cava (SVC) and inferior vena cava (IVC) are directly connected to the pulmonary arteries (PA). In an attempt to improve hemodynamic performance and hepatic flow distribution (HFD) of Fontan patients, a novel Y-shaped graft has recently been proposed to replace the traditional tube-shaped extracardiac grafts. Previous studies have demonstrated that the Y-graft is a promising design with the potential to reduce energy loss and improve HFD. However these studies also found suboptimal Y-graft performance in some patient models. The goal of this work is to determine whether performance can be improved in these models through further design optimization. Geometric and hemodynamic factors that influence the HFD have not been sufficiently investigated in previous work, particularly for the Y-graft. In this work, we couple Lagrangian particle tracking to an optimal design framework to study the effects of boundary conditions and geometry on HFD. Specifically, we investigate the potential of using a Y-graft design with unequal branch diameters to improve hepatic distribution under a highly uneven RPA/LPA flow split. As expected, the resulting optimal Y-graft geometry largely depends on the pulmonary flow split for a particular patient. The unequal branch design is demonstrated to be unnecessary under most conditions, as it is possible to achieve the same or better performance with equal-sized branches. Two patient-specific examples show that optimization-derived Y-grafts effectively improve the HFD, compared to initial nonoptimized designs using equal branch diameters. An instance of constrained optimization shows that energy efficiency slightly increases with increasing branch size for the Y-graft, but that a smaller branch size is preferred when a proximal anastomosis is needed to achieve optimal HFD.

References

1.
de Leval
,
M. R.
,
2005
, “
The Fontan Circulation: A Challenge to William Harvey?
Nat. Clin. Pract. Cardiovasc. Med.
,
2
, pp.
202
208
.10.1038/ncpcardio0157
2.
Marino
,
B. S.
,
2002
. “
Outcomes After the Fontan Procedure
,”
Curr. Opin. Pediatr.
,
14
, pp.
620
626
.10.1097/00008480-200210000-00010
3.
Rudolph
,
A. M.
,
2009
,
Congenital Diseases of the Heart: Clinical-Physiological Considerations
,
Wiley-Blackwell
,
Hoboken
.
4.
Duncan
,
B. W.
and
Desai
,
S.
,
2003
. “
Pulmonary Arteriovenous Malformations After Cavopulmonary Anastomosis
,”
Ann. Thorac. Surg.
,
76
, pp.
1759
1766
.10.1016/S0003-4975(03)00450-8
5.
Grossage
,
J. R.
, and
Kanj
,
G.
,
1998
, “
Pulmonary Arteriovenous Malformations
,”
Am. J. Respir. Crit. Care Med.
,
158
, pp.
643
661
.
6.
Uemura
,
H.
,
Yagihara
,
T.
,
Hattori
,
R.
,
Kawahira
,
Y.
,
Tsukano
,
S.
, and
Watanabe
,
K.
,
1999
, “
Redirection of Hepatic Venous Drainage After Total Cavopulmonary Shunt in Left Isomerism
,”
Ann. Thorac. Surg.
,
68
, pp.
1731
1735
.10.1016/S0003-4975(99)00665-7
7.
Pike
,
N. A.
,
Vricella
,
L. A.
,
Feinstein
,
J. A.
,
Black
,
M. D.
, and
Reitz
,
B. A.
,
2004
, “
Regression of Severe Pulmonary Arteriovenous Malformations After Fontan Revision and Hepatic Factor Rerouting
,”
Ann. Thorac. Surg.
,
78
, pp.
697
699
.10.1016/j.athoracsur.2004.02.003
8.
McElhinney
,
D. B.
,
Marx
,
G. R.
,
Marshall
,
A. C.
,
Mayer
,
J. E.
, and
del Nido
,
P. J.
,
2011
, “
Cavopulmonary Pathway Modification in Patients With Heterotaxy and Newly Diagnosed or Persistent Pulmonary Arteriovenous Malformations After a Modified Fontan Operation
,”
J. Thorac. Cardiovasc. Surg.
,
141
(
6
), pp.
1362
1370
.10.1016/j.jtcvs.2010.08.088
9.
Imoto
,
Y.
,
Sese
,
A.
, and
Joh
,
K.
,
2006
, “
Redirection of the Hepatic Venous Flow for the Treatment of Pulmonary Arteriovenous Malformations After Fontan Operation
,”
Pediatr. Cardiol.
,
27
, pp.
490
492
.10.1007/s00246-006-1242-2
10.
Dubini
,
G.
,
de Leval
,
M. R.
,
Pietrabissa
,
R.
,
Montevecchi
,
F. M.
, and
Fumero
,
R.
,
1996
. “
A Numerical Fluid Mechanical Study of Repaired Congenital Heart Defects: Application to the Total Cavopulmonary Connection
,”
J. Biomech.
,
29
(
1
), pp.
111
121
.10.1016/0021-9290(95)00021-6
11.
Migliavacca
,
F.
,
Dubini
,
G.
,
Bove
,
E. L.
, and
de Leval
,
M. R.
,
2003
, “
Computational Fluid Dynamics Simulations in Realistic 3-D Geometries of the Total Cavopulmonary Anastomosis: The Influence of the Inferior Caval Anastomosis
,”
J. Biomech. Eng.
,
125
, pp.
805
813
.10.1115/1.1632523
12.
Whitehead
,
K. K.
,
Pekkan
,
K.
,
Kitahima
,
H. D.
,
Paridon
,
S. M.
,
Yoganathan
,
A. P.
, and
Fogel
,
M. A.
,
2007
, “
Nonlinear Power Loss During Exercise in Single-Ventricle Patients After the Fontan: Insights From Computational Fluid Dynamics
,”
Circulation
,
116
, pp.
I-165
I-171
.10.1161/CIRCULATIONAHA.106.680827
13.
Marsden
,
A. L.
,
Vignon-Clementel
,
I. E.
,
Chan
,
F.
,
Feinstein
,
J. A.
, and
Taylor
,
C. A.
,
2007
, “
Effects of Exercise and Respiration on Hemodynamic Efficiency in CFD Simulations of the Total Cavopulmonary Connection
,”
Ann. Biomed. Eng.
,
35
(
2
), pp.
250
263
.10.1007/s10439-006-9224-3
14.
Walker
,
P. G.
,
Oweis
,
G. F.
, and
Watterson
,
K. G.
,
2001
, “
Distribution of Hepatic Venous Blood in the Total Cavo Pulmonary Connection: An In Vitro Study into the Effects of Connection Geometry
,”
J. Biomech. Eng.
,
123
(
6
), pp.
558
564
.10.1115/1.1407827
15.
Bove
,
E. L.
,
de Leval
,
M. R.
,
Migliavacca
,
F.
,
Guadagni
,
G.
, and
Dubini
,
G.
,
2003
, “
Computational Fluid Dynamics in the Evaluation of Hemodynamic Performance of Cavopulmonary Connections After the Norwood Procedure for Hypoplastic Left Heart Syndrome
,”
J. Thorac. Cardiovasc. Surg.
,
126
, pp.
1040
1047
.10.1016/S0022-5223(03)00698-6
16.
Shadden
,
S. C.
, and
Taylor
,
C. A.
,
2008
, “
Characterization of Coherent Structures in the Cardiovascular System
,”
Ann. Biomed. Eng.
,
36
(
7
), pp.
1152
1162
.10.1007/s10439-008-9502-3
17.
Marsden
,
A. L.
,
Bernstein
,
A. J.
,
Reddy
,
V. M.
,
Shadden
,
S.
,
Spilker
,
R. L.
,
Chan
,
F. P.
,
Taylor
,
C. A.
, and
Feinstein
,
J. A.
,
2009
, “
Evaluation of a Novel Y-Shaped Extracardiac Fontan Baffle Using Computational Fluid Dynamics
,”
J. Thorac. Cardiovasc. Surg.
,
137
(
2
), pp.
394
403
.10.1016/j.jtcvs.2008.06.043
18.
Dasi
,
L. P.
,
Whitehead
,
K.
,
Pekkan
,
K.
,
de Zelicourt
,
D.
,
Katajima
,
H.
,
Sundareswaran
,
K.
,
Kanter
,
K.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2011
, “
Pulmonary Hepatic Flow Distribution in Total Cavopulmonary Connections: Extracardiac Versus Intracardiac
,”
J. Thorac. Cardiovasc. Surg.
,
141
, pp.
207
214
.10.1016/j.jtcvs.2010.06.009
19.
Yang
,
W.
,
Vignon-Clementel
,
I. E.
,
Troianowski
,
G.
,
Reddy
,
V. M.
,
Feinstein
,
J. A.
, and
Marsden
,
A. L.
,
2012
, “
Hepatic Blood Flow Distribution and Performance in Traditional and Y-Graft Fontan Geometries: A Case Series Computational Fluid Dynamics Study
,”
J. Thorac. Cardiovasc. Surg.
,
143
, pp.
1086
1097
.10.1016/j.jtcvs.2011.06.042
20.
Soerensen
,
D. D.
,
Pekkan
,
K.
,
de Zelicourt
,
D.
,
Sharma
,
S.
,
Kanter
,
K.
,
Fogel
,
M.
, and
Yoganathan
,
A.
,
2007
, “
Introduction of a New Optimized Total Cavopulmonary Connection
,”
Ann. Thorac. Surg.
,
83
(
6
), pp.
2182
2190
.10.1016/j.athoracsur.2006.12.079
21.
Yang
,
W.
,
Feinstein
,
J. A.
, and
Marsden
,
A. L.
,
2010
, “
Constrained Optimization of an Idealized Y-Shaped Baffle for the Fontan Surgery at Rest and Exercise
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
33–36
), pp.
2135
2149
.10.1016/j.cma.2010.03.012
22.
Marsden
,
A. L.
,
Feinstein
,
J. A.
, and
Taylor
,
C. A.
,
2008
, “
A Computational Framework for Derivative-Free Optimization of Cardiovascular Geometries
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
21–24
), pp.
1890
1905
.10.1016/j.cma.2007.12.009
23.
Cheng
,
C. P.
,
Herfkins
,
R. J.
,
Lightner
,
A. L.
,
Taylor
,
C. A.
, and
Feinstein
,
J. A.
,
2004
, “
Blood Flow Conditions in the Proximal Pulmonary Arteries and Vena Cavae: Healthy Children During Upright Cycling Exercise
,”
Am. J. Physiol. Heart Circ. Physiol.
,
287
(
2
), pp.
H921
H926
.10.1152/ajpheart.00022.2004
24.
Seliem
,
M. A.
,
Murphy
,
J.
,
Vetter
,
J.
,
Heyman
,
S.
, and
Norwood
,
W.
,
1997
, “
Lung Perfusion Patterns After Bidirectional Cavopulmonary Anastomosis (Hemi-Fontan Procedure)
,”
Pediatr. Cardiol.
,
18
, pp.
191
196
.10.1007/s002469900146
25.
Troianowski
,
G.
,
Taylor
,
C. A.
,
Feinstein
,
J. A.
, and
Vignon-Clementel
,
I.
,
2011
, “
Three-Dimensional Simulations in Glenn Patients: Clinically Based Boundary Conditions, Hemodynamic Results and Sensitivity to Input Data
,”
J. Biomech. Eng.
,
133
(
11
).10.1115/1.4005377
26.
Wilson
,
N.
,
Wang
,
K.
,
Dutton
,
R.
, and
Taylor
,
C. A.
,
2001
, “
A Software Framework for Creating Patient Specific Geometric Models From Medical Imaging Data for Simulation Based Medical Planning of Vascular Surgery
,”
Lect. Notes Comput. Sci.
,
2208
, pp.
449
456
.10.1007/3-540-45468-3
27.
Schmidt
,
J. P.
,
Delp
,
S. L.
,
Sherman
,
M. A.
,
Taylor
,
C. A.
,
Pande
,
V. S.
, and
Altman
,
R. B.
,
2008
, “
The Simbios National Center: Systems Biology in Motion
,”
Proc. IEEE, special issue on Computational System Biology
,
96
(
8
), pp.
1266
1280
.10.1109/JPROC.2008.925454
28.
Sharma
,
S.
,
Ensley
,
A. E.
,
Hopkins
,
K.
,
Chatzimavrodis
,
G. P.
,
Healy
,
T. M.
,
Tam
,
V. K. H.
,
Kanter
,
K. R.
, and
Yoganathan
,
A. P.
,
2001
, “
In Vivo Flow Dynamics of the Total Cavopulmonary Connection From Three-Dimensional Multislice Magnetic Resonance Imaging
,”
Ann. Thorac. Surg.
,
71
(
3
), pp.
889
898
.10.1016/S0003-4975(00)02517-0
29.
Marsden
,
A. L.
,
Reddy
,
V. M.
,
Shadden
,
S. C.
,
Chan
,
F. P.
,
Taylor
,
C. A.
, and
Feinstein
,
J. A.
,
2010
, “
A New Multiparameter Approach to Computational Simulation for Fontan Assessment and Redesign
,”
Congenital Heart Disease
,
5
(
2
), pp.
104
117
.10.1111/j.1747-0803.2010.00383.x
30.
Taylor
,
C. A.
,
Hughes
,
T. J. R.
, and
Zarins
,
C. K.
,
1998
, “
Finite Element Modeling of Blood Flow in Arteries
,”
Comput. Method. Appl. Mech. Eng.
,
158
(
1–2
), pp.
155
196
.10.1016/S0045-7825(98)80008-X
31.
Muller
,
J.
,
Sahni
,
O.
,
Li
,
X.
,
Jansen
,
K. E.
,
Shephard
,
M. S.
, and
Taylor
,
C. A.
,
2005
, “
Anisotropic Adaptive Finite Element Method for Modeling Blood Flow
,”
Comput. Methods Biomech. Biomed. Eng.
,
8
(
5
), pp.
295
305
.10.1080/10255840500264742
32.
Hjortdal
,
V. E.
,
Emmertsen
,
K.
,
Stenbog
,
E.
,
Frund
,
T.
,
Rahbek Schmidt
,
M.
,
Kromann
,
O.
,
Sorensen
,
K.
, and
Pedersen
,
E. M.
,
2003
, “
Effects of Exercise and Respiration on Blood Flow in Total Cavopulmonary Connection: A Real-Time Magnetic Resonance Flow Study
,”
Circulation
,
108
(
10
), pp.
1227
1231
.10.1161/01.CIR.0000087406.27922.6B
33.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2010
, “
Outflow Boundary Conditions for 3D Simulations of Non-Periodic Blood Flow and Pressure Fields in Deformable Arteries
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
5
), pp.
625
640
.10.1080/10255840903413565
34.
Booker
,
A. J.
,
Dennis
, Jr.,
J. E.
,
Frank
,
P. D.
,
Serafini
,
D. B.
,
Torczon
,
V.
, and
Trosset
,
M. W.
,
1999
, “
A Rigorous Framework for Optimization of Expensive Functions by Surrogates
,”
Struct. Optim.
,
17
(
1
), pp.
1
13
.10.1007/BF01197708
35.
Audet
,
C.
, and
Dennis
, Jr.,
J. E.
,
2006
, “
Mesh Adaptive Direct Search Algorithms for Constrained Optimization
,”
SIAM J. Optim.
,
17
(
1
), pp.
2
11
.
36.
Audet
,
C.
, and
Dennis
, Jr.,
J. E.
,
2003
, “
Analysis of Generalized Pattern Searches
,”
SIAM J. Optim.
,
13
(
3
), pp.
889
903
.10.1137/S1052623400378742
37.
Torczon
,
V.
,
1997
, “
On the Convergence of Pattern Search Algorithms
,”
SIAM J. Optim.
,
7
, pp.
1
25
.10.1137/S1052623493250780
38.
Marsden
,
A. L.
,
Wang
,
M.
,
Dennis
, Jr.,
J. E.
, and
Moin
,
P.
,
2004
, “
Optimal Aeroacoustic Shape Design Using the Surrogate Management Framework
,”
Optim. Eng.
,
5
(
2
), pp.
235
262
. Special Issue: Surrogate Optimization.10.1023/B:OPTE.0000033376.89159.65
39.
Audet
,
C.
, and
Dennis
, Jr.,
J. E.
,
2004
, “
A Pattern Search Filter Method for Nonlinear Programming Without Derivatives
,”
SIAM J. Optim.
,
14
(
4
), pp.
980
1010
.10.1137/S105262340138983X
40.
Forrester
,
A. I. J.
,
Sobester
,
A.
, and
Keane
,
A. J.
,
2007
, “
Multi-Fidelity Optimization via Surrogate Modelling
,”
Proc. R. Soc. London, Ser. A
,
463
, pp.
3251
3269
.10.1098/rspa.2007.1900
41.
Haggerty
,
C. M.
,
Kanter
,
K. R.
,
Restrepo
,
M.
,
de Zelicourt
,
D. A.
,
Parks
,
W. J.
,
Rossignac
,
J.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2012
, “
Simulating Hemodynamics of the Fontan Y-Graft Based on Patient-Specific In Vivo Connections
,”
J. Thorac. Cardiovasc. Surg.
, (in press).10.1016/j.jtcvs.2012.03.076
42.
Kanter
,
K. R.
,
Haggerty
,
C. M.
,
Restrepo
,
M.
,
de Zelicourt
,
D. A.
,
Parks
,
W. J.
,
Rossignac
,
J.
,
Parks
,
W. J.
, and
Yoganathan
,
A. P.
,
2012
, “
Preliminary Clinical Experience With a Bifurcated Y-Graft Fontan Procedure- A Feasibility Study
,”
J. Thorac. Cardiovasc. Surg.
,
144
(
2
), pp.
383
389
.10.1016/j.jtcvs.2012.05.015
43.
Sundareswaran
,
K. S.
,
Pekkan
,
K.
,
Dasi
,
L. P.
,
Whitehead
,
K.
,
Sharma
,
S.
,
Kanter
,
K.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
,
2008
, “
The Total Cavopulmonary Connection Resistance: A Significant Impact on Single Ventricle Hemodynamics at Rest and Exercise
,”
Am. J. Physiol. Heart Circ. Physiol.
,
295
, pp.
H2427
H2435
.10.1152/ajpheart.00628.2008
44.
Baretta
,
A.
,
Corsini
,
C.
,
Yang
,
W.
,
Vignon-Clementel
,
I. E.
,
Marsden
,
A. L.
,
Hsia
,
T. Y.
,
Dubini
,
G.
,
Migliavacca
,
F.
, and
Pennati
,
G.
,
2011
, “
Virtual Surgeries in Patients With Congenital Heart Disease: A Multiscale Modelling Test Case
,”
Philos. Trans. R. Soc.
,
369
(
1954
), pp.
4316
4330
.10.1098/rsta.2011.0130
45.
Audet
,
S. S. C.
, and
Marsden
,
A. L.
,
2010
, “
A Method for Stochastic Constrained Optimization Using Derivative-Free Surrogate Pattern Search and Collocation
,”
J. Comput. Phys.
,
229
(
12
), pp.
4664
4682
.10.1016/j.jcp.2010.03.005
46.
Dobrin
,
P. B.
,
Mirande
,
P.
,
Kang
,
S.
,
Dong
,
Q. S.
, and
Mrkvicka
,
R.
,
1998
, “
Mechanics of End-to-End Artery-to-PTFE Graft Anastomoses
,”
Ann. Vasc. Surg.
,
12
(
4
), pp.
317
323
.10.1007/s100169900161
47.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Besnon
,
D.
,
Sankaran
,
S.
, and
Marsden
,
A. L.
,
2008
, “
Computational Fluid-Structure Interaction: Methods and Application to a Total Cavopulmonary Connection
,”
Comput. Mech.
,
45
(
1
), pp.
77
89
.10.1007/s00466-009-0419-y
You do not currently have access to this content.