While many congenital heart defects can be treated without significant long term sequelae, some achieve successful palliation as their definitive endpoints. The single-ventricle defect is one such defect and leaves the child with only one operational ventricle, requiring the systemic and the pulmonary circulations to be placed in series through several operations performed during early childhood. Numerical simulations may be used to investigate these hemodynamic conditions and their relation to post-operative sequelae; however, they rely heavily on boundary condition prescription. In this study, we investigate the impact of hemodynamic input data uncertainties on simulation results. Imaged-based patient-specific models of the multi-branched pulmonary arteries and superior vena cava were built for five cavopulmonary connection (i.e. Glenn) patients. Magnetic resonance imaging and catheterization data were acquired for each patient prior to their Fontan surgery. Inflow and outflow boundary conditions were constructed to match available clinical data and resulted in the development of a framework to incorporate these types of clinical data into patient-specific simulations. Three-dimensional computational fluid dynamics simulations were run and hemodynamic indicators were computed. Power loss was low (and efficiency very high) and a linear correlation was found between power loss and cardiac index among the five patients. Other indicators such as low wall shear stress were considered to better characterize these patients. Flow was complex and oscillatory near the anastomosis, and laminar in the smaller branches. While common trends were seen among patients, results showed differences among patients, especially in the 3D maps, strengthening the importance of patient-specific simulations. A sensitivity analysis was performed to investigate the impact of input data (clinical and modeling) to construct boundary conditions on several indicators. Overall, the sensitivity of the output indicators to the input data was small but non-negligible. The sensitivity of commonly used hemodynamic indicators to compare patients is discussed in this context. Power efficiency was much more sensitive to pressure variation than power loss. To increase the precision of such indicators, mean flow split between right and left lungs needs to be measured with more accuracy with higher priority than refining the model of how the flow is distributed on average among the smaller branches. Although ±10% flow split imprecision seemed reasonable in terms of patient comparison, this study suggests that the common practice of imposing a right pulmonary artery/left pulmonary artery flow split of 55%/45% when performing patient specific simulations should be avoided. This study constitutes a first step towards understanding the hemodynamic differences between pre- and post Fontan surgery, predicting these differences, and evaluating surgical outcomes based on preoperative data.

References

1.
DeGroff
,
C.
, 2008, “
Modeling the Fontan Circulation: Where We Are and Where We Need to Go
,”
Pediatr. Cardiol.
,
29
(
1
), pp.
3
12
.
2.
de Leval
,
M. R.
, and
Deanfield
,
J. E.
, 2010, “
Four Decades of Fontan Palliation
,”
Nat. Rev. Cardiol.
,
7
(
9
), pp.
520
527
.
3.
Taylor
,
C. A.
, and
Figueroa
,
C. A.
, 2009, “
Patient-Specific Modeling of Cardiovascular Mechanics
,”
Ann. Rev. Biomed. Eng.
,
11
, pp.
109
134
.
4.
Taylor
,
C. A.
, and
Steinman
,
D. A.
, 2010, “
Image-Based Modeling of Blood Flow and Vessel Wall Dynamics: Applications, Methods and Future Directions
,”
Ann. Biomed. Eng.
,
38
(
3
), pp.
1188
1203
.
5.
Vignon-Clementel
,
I. E.
,
Marsden
,
A. L.
, and
Feinstein
,
J. A.
, 2010, “
A Primer on Computational Simulation in Congenital Heart Disease for the Clinician
,”
Prog. Pediatr. Cardiol.
,
30
, pp.
3
13
.
6.
de Zelicourt
,
D. A.
,
Marsden
,
A. L.
,
Fogel
,
M. A.
, and
Yoganathan
,
A. P.
, 2010, “
Imaging and Patient-Specific Simulations for the Fontan Surgery: Current Methodologies and Clinical Applications
,”
Prog. Pediatr. Cardiol.
,
30
(
1–2
), Proceedings of the 1st International Conference on Computational Simulation in Congenital Heart Disease, pp.
33
44
.
7.
Vignon
,
I. E.
, and
Taylor
,
C. A.
, 2004, “
Outflow Boundary Conditions for One-Dimensional Finite Element Modeling of Blood Flow and Pressure Waves in Arteries
,”
Wave Motion
39
(
4
), pp.
361
374
.
8.
Vignon-Clementel
,
C. A.
,
Figueroa
,
K.
,
Jansen
,
E.
, and
Taylor
,
C. A.
, 2006, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
29–32
), pp.
3776
3796
.
9.
Balossino
,
R.
,
Pennati
,
G.
,
Migliavacca
,
F.
,
Formaggia
,
L.
,
Veneziani
,
A.
,
Tuveri
,
M.
, and
Dubini
,
G.
, 2009, “
Computational Models to Predict Stenosis Growth in Carotid Arteries: Which is the Role of Boundary Conditions?
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
1
), pp.
113
123
.
10.
Malota
,
Z.
,
Nawrat
,
Z.
, and
Kostka
,
P.
, 2007, “
Computer and Physical Modeling of Blood Circulation Pump Support for a New Field of Application in Palliative Surgery
,”
Int. J. Artif. Organs
,
30
(
12
), pp.
1068
1074
.
11.
Guadagni
,
G.
,
Bove
,
E. L.
,
Migliavacca
,
F.
, and
Dubini
,
G.
, 2001, “
Effects of Pulmonary Afterload on the Hemodynamics after the Hemi-Fontan Procedure
,”
Med. Eng. Phys.
,
23
(
5
), pp.
293
298
.
12.
Bove
,
E.
,
de Leval
,
M.
,
Migliavacca
,
F.
,
Guadagni
,
D.
, and
Dubini
,
G.
, 2003, “
Computational Fluid Dynamics in the Evaluation of Hemodynamic Performance of Cavopulmonary Connections after the Norwood Procedure for Hypoplastic Left Heart Syndrome
,”
J. Thorac. Cardiovasc. Surg.
,
126
(
4
), pp.
1040
1047
.
13.
Pennati
,
G.
,
Corsini
,
C.
,
Cosentino
,
D.
,
Hsia
,
T.-Y.
,
Luisi
,
V.
,
Dubini
,
G.
, and
Migliavacca
,
F.
, 2011, “
Boundary Conditions of Patient-Specific Fluid Dynamics Modelling of Cavopulmonary Connections: Possible Adaptation of Pulmonary Resistances Results in a Critical Issue for a Virtual Surgical Planning
,”
J. R. Soc. Interface
,
1
, pp.
297
307
.
14.
Pekkan
,
K.
,
Dasi
,
L. P.
,
de Zelicourt
,
D.
,
Sundareswaran
,
K. S.
,
Fogel
,
M. A.
,
Kanter
,
K. R.
, and
Yoganathan
,
A. P.
, 2009, “
Hemodynamic Performance of Stage-2 Univentricular Reconstruction: Glenn Vs. Hemi-Fontan Templates
,”
Ann. Biomed. Eng.
,
37
(
1
), pp.
50
63
.
15.
Marsden
,
A. L.
,
Vignon-Clementel
,
I. E.
,
Chan
,
F. P.
,
Feinstein
,
J. A.
, and
Taylor
,
C. A.
, 2007, “
Effects of Exercise and Respiration on Hemodynamic Efficiency in CFD Simulations of the Total Cavopulmonary Connection
,”
Ann. Biomed. Eng.
,
35
(
2
), pp.
250
263
.
16.
Suh
,
G.-Y.
,
Les
,
A. S.
,
Tenforde
,
A. S.
,
Shadden
,
S. C.
,
Spilker
,
R. L.
,
Yeung
,
J. J.
,
Cheng
,
C. P.
,
Herfkens
,
R. J.
,
Dalman
,
R. L.
, and
Taylor
,
C. A.
, 2011, “
Quantification of Particle Residence Time in Abdominal Aortic Aneurysms Using Magnetic Resonance Imaging and Computational Fluid Dynamics
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
864
883
.
17.
Bazilevs
,
Y.
,
Hsu
,
M.-C.
,
Benson
,
D. J.
,
Sankaran
,
S.
, and
Marsden
,
A. L.
, 2009, “
Computational Fluid-Structure Interaction: Methods and Application to a Total Cavopulmonary Connection
,”
Comput. Mech.
,
45
(
1
), pp.
77
89
.
18.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
, 2010, “
Outflow Boundary Conditions for 3D Simulations of Non-Periodic Blood Flow and Pressure Fields in Deformable Arteries
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
5
), pp.
625
640
.
19.
Schmidt
,
J. P.
,
Delp
,
S. L.
,
Sherman
,
M. A.
,
Taylor
,
C. A.
,
Pande
,
V. S.
, and
Altman
,
R. B.
, 2008, “
The Simbios National Center: Systems Biology in Motion
,”
Proc. IEEE
,
96
(
8
), pp.
1266
1280
.
20.
Muller
,
J.
,
Sahni
,
O.
,
Li
,
X.
,
Jansen
,
K.
,
Shephard
,
M.
and
Taylor
,
C. A.
, 2005, “
Anisotropic Adaptive Finite Element Method for Modelling Blood Flow
,”
Comput. Methods Biomech. Biomed. Eng.
,
8
(
5
), pp.
295
305
.
21.
Sahni
,
O.
,
Muller
,
J.
,
Jansen
,
K.
,
Shephard
,
M.
, and
Taylor
,
C.
, 2006, “
Efficient Anisotropic Adaptive Discretization of the Cardiovascular System
,”
Comput. Meth. Appl. Mech. Eng.
,
195
(
41–43
), pp.
5634
5655
.
22.
Womersley
,
J.
, 1955, “
Oscillatory Motion of a Viscous Liquid in a Thin-walled Elastic Tube - I: The Linear Approximation for Long Waves
,”
Philos. Mag.
,
7
, pp.
199
221
.
23.
Spilker
,
R. L.
,
Feinstein
,
J. A.
,
Parker
,
D. W.
,
Reddy
,
V. M.
, and
Taylor
,
C. A.
, 2007, “
Morphometry-Based Impedance Boundary Conditions for Patient-Specific Modeling of Blood Flow in Pulmonary Arteries
,”
Ann. Biomed. Eng.
,
35
(
4
), pp.
546
559
.
24.
Marsden
,
A. L.
,
Bernstein
,
A. D.
,
Reddy
,
V. M.
,
Shadden
,
S. C.
,
Spilker
,
R. L.
,
Chan
,
F. P.
,
Taylor
,
C. A.
, and
Feinstein
,
J. A.
, 2009, “
Evaluation of a Novel Y-Shaped Extracardiac Fontan Baffle using Computational Fluid Dynamics
,”
J. Thorac. Cardiovasc. Surg.
,
137
, pp.
394
400
.
25.
Tang
,
B. T.
,
Cheng
,
C. P.
,
Draney
,
M. T.
,
Wilson
,
N. M.
,
Tsao
,
P. S.
,
Herfkens
,
R. J.
, and
Taylor
,
C. A.
, 2006, “
Abdominal Aortic Hemodynamics in Young Healthy Adults at Rest and during Lower Limb Exercise: Quantification using Image–Based Computer Modeling
,”
Am. J. Physiol. Heart Circ. Physiol.
,
291
(
2
),
0363
-
6135
; H668-76.
26.
Sharma
,
S.
,
Ensley
,
A.
,
Hopkins
,
K.
,
Chatzimavroudis
,
G.
,
Healy
,
T.
,
Tam
,
V.
,
Kanter
,
K.
, and
Yoganathan
,
A.
, 2001, “
In Vivo Flow Dynamics of the Total Cavopulmonary Connection from Three-Dimensional Multislice Magnetic Resonance Imaging
,”
Ann. Thorac. Surg.
,
71
(
3
), pp.
889
898
.
27.
Tang
,
B. T.
,
Fonte
,
A.
,
Chan
,
F. P.
,
Tsao
,
P. S.
,
Feinstein
,
J. A.
, and
Taylor
,
C. A.
, 2011, “
Three-Dimensional Hemodynamics in the Human Pulmonary Arteries under Resting and Exercise Conditions
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
347
358
.
28.
Seliem
,
M. A.
,
Murphy
,
J.
,
Vetter
,
J.
,
Heyman
,
S.
, and
Norwood
,
W.
, 1997, “
Lung Perfusion Patterns after Bidirectional Cavopulmonary Anastomosis (Hemi-Fontan Procedure)
,”
Pediatr. Cardiol.
,
18
(
3
), pp.
191
196
.
29.
Cheng
,
C. P.
,
Herfkens
,
R. J.
,
Lightner
,
A. L.
,
Taylor
,
C. A.
, and
Feinstein
,
J. A.
, 2004, “
Blood Flow Conditions in the Proximal Pulmonary Arteries and Vena Cavae: Healthy Children during Upright Cycling Exercise
,”
Am. J. Physiol. Heart Circ. Physiol.
,
287
(
2
), pp.
H921
H926
.
30.
Sankaran
,
S.
, and
Marsden
,
A. L.
, 2011, “
A Stochastic Collocation Method for Uncertainty Quantification in Cardiovascular Simulations
,”
J, Biomech. Eng.
,
133
(
3
),
031001
.
31.
Murray
,
C. D.
, 1926, “
The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume
,”
Proc. Natl. Acad. Sci. U. S. A.
,
12
(
3
), pp.
207
214
.
32.
Spilker
,
R. L.
, 2009, “Computational Analysis of Blood Flow in Arteries incorporating Reduced-order Models of the Downstream Vasculature,” Ph.D. thesis, Stanford University.
33.
Zamir
,
M.
, 2000,
The Physics of Pulsatile Flow
,
Springer
,
New York
.
34.
Khambadkone
,
S.
,
Li
,
J.
,
de Leval
,
M. R.
,
Cullen
,
S.
,
Deanfield
,
J. E.
, and
Redington
,
A. N.
, 2003, “
Basal Pulmonary Vascular Resistance and Nitric Oxide Responsiveness Late after Fontan-Type Operation
,”
Circulation
,
107
(
25
), pp.
3204
3208
.
35.
Hjortdal
,
V.
, 2003, “
Effects of Exercise and Respiration on Blood Flow in Total Cavopulmonary Connection: A Real-Time Magnetic Resonance Flow Study
,”
Circulation
,
108
(
10
), pp.
1227
1231
.
You do not currently have access to this content.