High-velocity, low-amplitude spinal manipulation (HVLA-SM) is an efficacious treatment for low back pain, although the physiological mechanisms underlying its effects remain elusive. The lumbar facet joint capsule (FJC) is innervated with mechanically sensitive neurons and it has been theorized that the neurophysiological benefits of HVLA-SM are partially induced by stimulation of FJC neurons. Biomechanical aspects of this theory have been investigated in humans while neurophysiological aspects have been investigated using cat models. The purpose of this study was to determine the relationship between human and cat lumbar spines during HVLA-SM. Cat lumbar spine specimens were mechanically tested, using a displacement-controlled apparatus, during simulated HVLA-SM applied at L5, L6, and L7 that produced preload forces of 25% bodyweight for 0.5 s and peak forces that rose to 50–100% bodyweight within 125ms, similar to that delivered clinically. Joint kinematics and FJC strain were measured optically. Human FJC strain and kinematics data were taken from a prior study. Regression models were established for FJC strain magnitudes as functions of factors species, manipulation site, and interactions thereof. During simulated HVLA-SM, joint kinematics in cat spines were greater in magnitude compared with humans. Similar to human spines, site-specific HVLA-SM produced regional cat FJC strains at distant motion segments. Joint motions and FJC strain magnitudes for cat spines were larger than those for human spine specimens. Regression relationships demonstrated that species, HVLA-SM site, and interactions thereof were significantly and moderately well correlated for HVLA-SM that generated tensile strain in the FJC. The relationships established in the current study can be used in future neurophysiological studies conducted in cats to extrapolate how human FJC afferents might respond to HVLA-SM. The data from the current study warrant further investigation into the clinical relevance of site targeted HVLA-SM.

1.
Wolsko
,
P. M.
,
Eisenberg
,
D. M.
,
Davis
,
R. B.
,
Kessler
,
R.
, and
Phillips
,
R. S.
, 2003, “
Patterns and Perceptions of Care for Treatment of Back and Neck Pain: Results of a National Survey
,”
Spine
0362-2436,
28
(
3
), pp.
292
297
.
2.
Bronfort
,
G.
, 1999, “
Spinal Manipulation: Current State of Research and Its Indications
,”
Neurol. Clin.
0733-8619,
17
(
1
), pp.
91
111
.
3.
Bronfort
,
G.
,
Haas
,
M.
,
Evans
,
R. L.
, and
Bouter
,
L. M.
, 2004, “
Efficacy of Spinal Manipulation and Mobilization for Low Back Pain and Neck Pain: A Systematic Review and Best Evidence Synthesis
,”
Eur. Spine J.
0940-6719,
4
(
3
), pp.
335
356
.
4.
Triano
,
J.
, and
Herzog
,
W.
, 2000, “
The Mechanics of Spinal Manipulation
,”
Clinical Biomechanics of Spinal Manipulation
,
Churchill Livingstone
,
New York
, pp.
92
190
.
5.
Shekelle
,
P. G.
,
Markovich
,
M.
, and
Louie
,
R.
, 1995, “
Factors Associated With Choosing a Chiropractor for Episodes of Back Pain Care
,”
Med. Care
0025-7079,
33
(
8
), pp.
842
850
.
6.
Ianuzzi
,
A.
, and
Khalsa
,
P. S.
, 2005, “
Comparison of Human Lumbar Facet Joint Capsule Strains During Simulated High-Velocity, Low-Amplitude Spinal Manipulation Versus Physiological Motions
,”
Eur. Spine J.
0940-6719,
5
(
3
), pp.
277
290
.
7.
Ianuzzi
,
A.
, and
Khalsa
,
P. S.
, 2005, “
High Loading Rate During Spinal Manipulation Produces Unique Facet Joint Capsule Strain Patterns Compared With Axial Rotations
,”
J. Manipulative Physiol. Ther.
0161-4754,
28
(
9
), pp.
673
687
.
8.
Triano
,
J.
, and
Schultz
,
A. B.
, 1997, “
Loads Transmitted During Lumbosacral Spinal Manipulative Therapy
,”
Spine
0362-2436,
22
(
17
), pp.
1955
1964
.
9.
Pickar
,
J. G.
, and
Kang
,
Y. M.
, 2006, “
Paraspinal Muscle Spindle Responses to the Duration of a Spinal Manipulation Under Force Control
,”
J. Manipulative Physiol. Ther.
0161-4754,
29
(
1
), pp.
22
31
.
10.
Pickar
,
J. G.
,
Sung
,
P. S.
,
Kang
,
Y. M.
, and
Ge
,
W.
, 2007, “
Response of Lumbar Paraspinal Muscles Spindles is Greater to Spinal Manipulative Loading Compared With Slower Loading Under Length Control
,”
Eur. Spine J.
0940-6719,
7
(
5
), pp.
583
595
.
11.
Cavanaugh
,
J. M.
,
Ozaktay
,
A. C.
,
Yamashita
,
H. T.
, and
King
,
A. I.
, 1996, “
Lumbar Facet Pain: Biomechanics, Neuroanatomy and Neurophysiology
,”
J. Biomech.
0021-9290,
29
(
9
), pp.
1117
1129
.
12.
Cavanaugh
,
J. M.
,
Ozaktay
,
A. C.
,
Yamashita
,
T.
,
Avramov
,
A.
,
Getchell
,
T. V.
, and
King
,
A. I.
, 1997, “
Mechanisms of Low Back Pain: A Neurophysiologic and Neuroanatomic Study
,”
Clin. Orthop. Relat. Res.
0009-921X,
335
, pp.
166
180
.
13.
McLain
,
R. F.
, and
Pickar
,
J. G.
, 1998, “
Mechanoreceptor Endings in Human Thoracic and Lumbar Facet Joints
,”
Spine
0362-2436,
23
(
2
), pp.
168
173
.
14.
Pickar
,
J. G.
, 2002, “
Neurophysiological Effects of Spinal Manipulation
,”
Eur. Spine J.
0940-6719,
2
(
5
), pp.
357
371
.
15.
Ianuzzi
,
A.
,
Pickar
,
J. G.
, and
Khalsa
,
P. S.
, 2009, “
Validation of the Cat as a Model for the Human Lumbar Spine During Physiological Motions
,” submitted.
16.
Bogduk
,
N.
, 1980, “
The Dorsal Lumbar Muscles of the Cat
,”
Anat. Anz
0003-2786,
148
(
1
), pp.
55
67
.
17.
Pickar
,
J. G.
, and
McLain
,
R. F.
, 1995, “
Responses of Mechanosensitive Afferents to Manipulation of the Lumbar Facet in the Cat
,”
Spine
0362-2436,
20
(
22
), pp.
2379
2385
.
18.
Ianuzzi
,
A.
,
Little
,
J. S.
,
Chiu
,
J. B.
,
Baitner
,
A.
,
Kawchuk
,
G.
, and
Khalsa
,
P. S.
, 2004, “
Human Lumbar Facet Joint Capsule Strains: I. During Physiological Motions
,”
Eur. Spine J.
0940-6719,
4
(
2
), pp.
141
152
.
19.
Pickar
,
J. G.
, and
Wheeler
,
J. D.
, 2001, “
Response of Muscle Proprioceptors to Spinal Manipulative-Like Loads in the Anesthetized Cat
,”
J. Manipulative Physiol. Ther.
0161-4754,
24
(
1
), pp.
2
11
.
20.
Söderkvist
,
I.
, and
Wedin
,
P. A.
, 1993, “
Determining the Movements of the Skeleton Using Well-Configured Markers
,”
J. Biomech.
0021-9290,
26
(
12
), pp.
1473
1477
.
21.
Gaudette
,
G. R.
,
Todaro
,
J.
,
Krukenkamp
,
I. B.
, and
Chiang
,
F. P.
, 2001, “
Computer Aided Speckle Interferometry: A Technique for Measuring Deformation of the Surface of the Heart
,”
Ann. Biomed. Eng.
0090-6964,
29
(
9
), pp.
775
780
.
22.
Hatze
,
H.
, 1988, “
High-Precision Three-Dimensional Photogrammetric Calibration and Object Space Reconstruction Using a Modified DLT-Approach
,”
J. Biomech.
0021-9290,
21
(
7
), pp.
533
538
.
23.
Winkelstein
,
B. A.
,
Nightingale
,
R. W.
,
Richardson
,
W. J.
, and
Myers
,
B. S.
, 2000, “
The Cervical Facet Capsule and Its Role in Whiplash Injury: A Biomechanical Investigation
,”
Spine
0362-2436,
25
(
10
), pp.
1238
1246
.
24.
Cramer
,
G. D.
,
Gregerson
,
D. M.
,
Knudsen
,
J. T.
,
Hubbard
,
B. B.
,
Ustas
,
L. M.
, and
Cantu
,
J. A.
, 2002, “
The Effects of Side-Posture Positioning and Spinal Adjusting on the Lumbar Z Joints: A Randomized Controlled Trial With Sixty-Four Subjects
,”
Spine
0362-2436,
27
(
22
), pp.
2459
2466
.
25.
Pearcy
,
M. J.
, and
Bogduk
,
N.
, 1988, “
Instantaneous Axes of Rotation of the Lumbar Intervertebral Joints
,”
Spine
0362-2436,
13
(
9
), pp.
1033
1041
.
26.
Lee
,
R.
, and
Evans
,
J.
, 1997, “
An In Vivo Study of the Intervertebral Movements Produced by Posteroanterior Mobilization
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
12
(
6
), pp.
400
408
.
27.
Gal
,
J.
,
Herzog
,
W.
,
Kawchuk
,
G.
,
Conway
,
P.
, and
Zhang
,
Y. T.
, 1997, “
Measurements of Vertebral Translations Using Bone Pins, Surface Markers and Accelerometers
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
12
(
5
), pp.
337
340
.
28.
Gal
,
J.
,
Herzog
,
W.
,
Kawchuk
,
G.
,
Conway
,
P. J.
, and
Zhang
,
Y. T.
, 1997, “
Movements of Vertebrae During Manipulative Thrusts to Unembalmed Human Cadavers
,”
J. Manipulative Physiol. Ther.
0161-4754,
20
(
1
), pp.
30
40
.
29.
Gal
,
J. M.
,
Herzog
,
W.
,
Kawchuk
,
G. N.
,
Conway
,
P. J.
, and
Zhang
,
Y. T.
, 1995, “
Forces and Relative Vertebral Movements During SMT to Unembalmed Post-Rigor Human Cadavers: Peculiarities Associated With Joint Cavitation
,”
J. Manipulative Physiol. Ther.
0161-4754,
18
(
1
), pp.
4
9
.
30.
Cohen
,
E.
,
Triano
,
J. J.
,
McGregor
,
M.
, and
Papakyriakou
,
M.
, 1995, “
Biomechanical Performance of Spinal Manipulation Therapy by Newly Trained vs. Practicing Providers: Does Experience Transfer To Unfamiliar Procedures?
,”
J. Manipulative Physiol. Ther.
0161-4754,
18
(
6
), pp.
347
352
.
31.
Keller
,
T. S.
,
Colloca
,
C. J.
, and
Gunzburg
,
R.
, 2003, “
Neuromechanical Characterization of In Vivo Lumbar Spinal Manipulation. Part I. Vertebral Motion
,”
J. Manipulative Physiol. Ther.
0161-4754,
26
(
9
), pp.
567
578
.
32.
Maigne
,
J. Y.
, and
Guillon
,
F.
, 2000, “
Highlighting of Intervertebral Movements and Variations of Intradiskal Pressure During Lumbar Spine Manipulation: A Feasibility Study
,”
J. Manipulative Physiol. Ther.
0161-4754,
23
(
8
), pp.
531
535
.
33.
Macpherson
,
J. M.
, and
Ye
,
Y.
, 1998, “
The Cat Vertebral Column: Stance Configuration and Range of Motion
,”
Exp. Brain Res.
0014-4819,
119
(
3
), pp.
324
332
.
34.
Ianuzzi
,
A.
,
Pickar
,
J. G.
, and
Khalsa
,
P. S.
, 2009, “
Determination of Torque-Limits for Human and Cat Lumbar Spine Specimens During Displacement-Controlled Physiological Motions
,”
Spine J.
,
9
(
1
), pp.
77
86
.
35.
Heylings
,
D. J.
, 1980, “
Supraspinous and Interspinous Ligaments in Dog, Cat and Baboon
,”
J. Anat.
0021-8782,
130
(
Pt 2
), pp.
223
228
.
36.
Yamashita
,
T.
,
Minaki
,
Y.
,
Ozaktay
,
A. C.
,
Cavanaugh
,
J. M.
, and
King
,
A. I.
, 1996, “
A Morphological Study of the Fibrous Capsule of the Human Lumbar Facet Joint
,”
Spine
0362-2436,
21
(
5
), pp.
538
543
.
37.
Lee
,
K. E.
,
Franklin
,
A. N.
,
Davis
,
M. B.
, and
Winkelstein
,
B. A.
, 2005, “
Tensile Cervical Facet Capsule Ligament Mechanics: Failure and Subfailure Responses in the Rat
,”
J. Biomech
,
39
(
7
), pp.
1256
1264
.
38.
Haas
,
M.
,
Groupp
,
E.
,
Panzer
,
D.
,
Partna
,
L.
,
Lumsden
,
S.
, and
Aickin
,
M.
, 2003, “
Efficacy Of Cervical Endplay Assessment as an Indicator for Spinal Manipulation
,”
Spine
0362-2436,
28
(
11
), pp.
1091
1096
.
39.
Jull
,
G.
,
Bogduk
,
N.
, and
Marsland
,
A.
, 1988, “
The Accuracy of Manual Diagnosis for Cervical Zygapophysial Joint Pain Syndromes
,”
Med. J. Aust.
0025-729X,
148
(
5
), pp.
233
236
.
40.
Grigg
,
P.
, and
Greenspan
,
B. J.
, 1977, “
Response of Primate Joint Afferent Neurons to Mechanical Stimulation of Knee Joint
,”
J. Neurophysiol.
0022-3077,
40
(
1
), pp.
1
8
.
41.
Burgess
,
P. R.
, and
Clark
,
F. J.
, 1969, “
Characteristics of Knee Joint Receptors in the Cat
,”
J. Physiol. (London)
0022-3751,
203
(
2
), pp.
317
335
.
42.
Grigg
,
P.
, 1975, “
Mechanical Factors Influencing Response of Joint Afferent Neurons From Cat Knee
,”
J. Neurophysiol.
0022-3077,
38
(
6
), pp.
1473
1484
.
43.
Khalsa
,
P. S.
, and
Grigg
,
P.
, 1996, “
Responses of Mechanoreceptor Neurons in the Cat Knee Joint Capsule Before and After Anterior Cruciate Ligament Transection
,”
J. Orthop. Res.
0736-0266,
14
(
1
), pp.
114
122
.
44.
Vallbo
,
A. B.
, and
Hagbarth
,
K. E.
, 1968, “
Activity From Skin Mechanoreceptors Recorded Percutaneously in Awake Human Subjects
,”
Exp. Neurol.
0014-4886,
21
(
3
), pp.
270
289
.
45.
Vallbo
,
A. B.
,
Olausson
,
H.
,
Wessberg
,
J.
, and
Kakuda
,
N.
, 1995, “
Receptive Field Characteristics of Tactile Units With Myelinated Afferents in Hairy Skin of Human Subjects
,”
J. Physiol. (London)
0022-3751,
483
(
3
), pp.
783
795
.
46.
Edin
,
B.
, 2001, “
Cutaneous Afferents Provide Information About Knee Joint Movements in Humans
,”
J. Physiol. (London)
0022-3751,
531
(
1
), pp.
289
297
.
47.
Freeman
,
A. W.
, and
Johnson
,
K. O.
, 1982, “
Cutaneous Mechanoreceptors in Macaque Monkey: Temporal Discharge Patterns Evoked by Vibration, and a Receptor Model
,”
J. Physiol. (London)
0022-3751,
323
, pp.
21
41
.
48.
Mountcastle
,
V. B.
,
LaMotte
,
R. H.
, and
Carli
,
G.
, 1972, “
Detection Thresholds for Stimuli in Humans and Monkeys: Comparison With Threshold Events in Mechanoreceptive Afferent Nerve Fibers Innervating the Monkey Hand
,”
J. Neurophysiol.
0022-3077,
35
(
1
), pp.
122
136
.
49.
Khalsa
,
P. S.
,
Friedman
,
R. M.
,
Srinivasan
,
M. A.
, and
Lamotte
,
R. H.
, 1998, “
Encoding of Shape and Orientation of Objects Indented Into the Monkey Fingerpad by Populations of Slowly and Rapidly Adapting Mechanoreceptors
,”
J. Neurophysiol.
0022-3077,
79
(
6
), pp.
3238
3251
.
50.
Iggo
,
A.
, and
Muir
,
A. R.
, 1969, “
The Structure and Function of a Slowly Adapting Touch Corpuscle in Hairy Skin
,”
J. Physiol. (London)
0022-3751,
200
(
3
), pp.
763
796
.
51.
Horch
,
K. W.
, and
Burgess
,
P. R.
, 1975, “
Effect of Activation and Adaptation on the Sensitivity of Slowly Adapting Cutaneous Mechanoreceptors
,”
Brain Res.
0006-8993,
98
(
1
), pp.
109
118
.
52.
Little
,
J. S.
,
Ianuzzi
,
A.
,
Chiu
,
J. B.
,
Baitner
,
A.
, and
Khalsa
,
P. S.
, 2004, “
Human Lumbar Facet Joint Capsule Strains: II. Alteration of Strains Subsequent to Anterior Interbody Fixation
,”
Eur. Spine J.
0940-6719,
4
(
2
), pp.
153
162
.
53.
Herzog
,
W.
,
Scheele
,
D.
, and
Conway
,
P. J.
, 1999, “
Electromyographic Responses of Back and Limb Muscles Associated With Spinal Manipulative Therapy
,”
Spine
0362-2436,
24
(
2
), pp.
146
152
.
You do not currently have access to this content.