Particle-image velocimetry (PIV) was used to visualize the flow within an optically transparent pediatric ventricular assist device (PVAD) under development in our laboratory. The device studied is a diaphragm type pulsatile pump with an ejection volume of 30 ml per beating cycle intended for temporary cardiac assistance as a bridge to transplantation or recovery in children. Of particular interest was the identification of flow patterns, including regions of stagnation and/or strong turbulence that often promote thrombus formation and hemolysis, which can degrade the usefulness of such devices. For this purpose, phase-locked PIV measurements were performed in planes parallel to the diaphram that drives the flow in the device. The test fluid was seeded with 10μm polystyrene spheres, and the motion of these particles was used to determine the instantaneous flow velocity distribution in the illumination plane. These measurements revealed that flow velocities up to 1.0 m/s can occur within the PVAD. Phase-averaged velocity fields revealed the fixed vortices that drive the bulk flow within the device, though significant cycle-to-cycle variability was also quite apparent in the instantaneous velocity distributions, most notably during the filling phase. This cycle-to-cycle variability can generate strong turbulence that may contribute to greater hemolysis. Stagnation regions have also been observed between the input and output branches of the prototype, which can increase the likelihood of thrombus formation.

1.
Deng
,
M. C.
,
Edwards
,
L. B.
,
Hertz
,
M. I.
,
Rowe
,
A. W.
, and
Kormos
,
R. L.
, 2003, “
Mechanical Circulatory Support Device Database of the International Society for Heart and Lung Transplantation: First Annual Report—2003
,”
J. Heart Lung Transplant.
,
22
, pp.
653
662
.
2.
Rose
,
E. A.
,
Gelijns
,
A. C.
,
Moskowitz
,
A. J.
,
Heitjan
,
D. F.
,
Stevenson
,
L. W.
,
Dembitsky
,
W.
,
Long
,
J. W.
,
Ascheim
,
D. D.
,
Tierney
,
A. R.
,
Levitan
,
R. G.
,
Watson
,
J. T.
,
Ronan
,
N. S.
,
Shapiro
,
P. A.
,
Lazar
,
R. M.
,
Miller
,
L. W.
,
Gupta
,
L.
,
Frazier
,
O. H.
,
Desvigne-Nickens
,
P.
,
Oz
,
M. C.
,
Poirier
,
V. L.
, and
Meier
,
P.
, 2001, “
Long Term Mechanical Left Ventricular Assistance for End-Stage Heart Failure
,”
N. Engl. J. Med.
0028-4793,
345
, pp.
1435
1443
.
3.
Maybaum
,
S.
,
Mancini
,
D.
,
Xydas
,
S.
,
Starling
,
R. C.
,
Aaronson
,
K.
,
Pagani
,
F. D.
,
Miller
,
L. W.
,
Margulies
,
K.
,
McRee
,
S.
,
Frazier
,
O. H.
, and
Torre-Amione
,
G.
, 2007, “
Cardiac Improvement During Mechanical Circulatory Support: A Prospective Multicenter Study of the LVAD Working Group
,”
Circulation
0009-7322,
115
, pp.
2497
2505
.
4.
Goldman
,
A. P.
,
Cassidy
,
J.
,
de Leval
,
M.
,
Haynes
,
S.
,
Brown
,
K.
,
Whitmore
,
P.
,
Cohen
,
G.
,
Tsang
,
V.
,
Elliott
,
M.
,
Davison
,
A.
,
Hamilton
,
L.
,
Bolton
,
D.
,
Wray
,
J.
,
Hasan
,
A.
,
Radley-Smith
,
R.
,
Macrae
,
D.
, and
Smith
,
J.
, 2003, “
The Waiting Game: Bridging to Pediatric Heart Transplantation
,”
Lancet
0140-6736,
362
, pp.
1967
1970
.
5.
Davies
,
R. R.
,
Russo
,
M. J.
,
Hong
,
K. N.
O’Byrne
,
M. L.
,
Cork
,
D. P.
,
Moskowitz
,
A. J.
,
Gelijns
,
A. C.
,
Mital
,
S.
,
Mosca
,
R. S.
, and
Chen
,
J. M.
, 2008, “
The Use of Mechanical Circulatory Support as a Bridge to Transplantation in Pediatric Patients: An Analysis of the United Network for Organ Sharing database
,”
J. Thorac. Cardiovasc. Surg.
0022-5223,
135
(
2
), pp.
421
427
.
6.
Blume
,
E. D.
,
Naftel
,
D. C.
,
Bastardi
,
H. J.
,
Duncan
,
B. W.
,
Kirklin
,
J. K.
, and
Webber
,
S. A.
, 2006, “
Outcomes of Children Bridged to Heart Transplantation With Ventricular Assist Devices. A Multi-Institutional Study
,”
Circulation
0009-7322,
113
(
19
), pp.
2313
2319
.
7.
Baldwin
,
J. T.
,
Borovetz
,
S.
,
Duncan
,
B. W.
,
Gartner
,
M. J.
,
Jarvik
,
R. K.
,
Weiss
,
W. J.
, and
Hoke
,
T. R.
, 2006, “
The National Heart, Lung, and Blood Institute Pediatric Circulatory Support Program
,”
Circulation
0009-7322,
113
, pp.
147
155
.
8.
David
,
T.
,
Thomas
,
S.
, and
Walker
,
P. G.
, 2001, “
Platelet Deposition in Stagnation Point Flow: An Analytical and Computational Simulation
,”
Med. Eng. Phys.
1350-4533,
23
, pp.
299
312
.
9.
Moreira
,
L. F. P.
,
Galantier
,
J.
,
Benício
,
A.
,
Leirner
,
A. A.
,
Cestari
,
I. A.
, and
Stolf
,
N. A. G.
, 2007, “
Left Ventricular Circulatory Support as Bridge to Heart Transplantation in Chagas’ Disease Cardiomyopathy
,”
Artif. Organs
0160-564X,
31
(
4
), pp.
253
258
.
10.
Prasad
,
A. K.
,
Adrian
,
R. J.
,
Landreth
,
C. C.
, and
Offut
,
P. W.
, 1992, “
Effect of Resolution on the Speed and Accuracy of Particle Image Velocimetry Interrogation
,”
Exp. Fluids
0723-4864,
13
, pp.
105
116
.
11.
Christensen
,
K. T.
,
Soloff
,
S. M.
, and
Adrian
,
R. J.
, 2000, “
PIV SLEUTH: Integrated Particle Image Velocimetry Interrogation/Validation Software
,” University of Illinois, Urbana, Champaign, TAM Report No. 943.
12.
Reynolds
,
W. C.
, and
Hussain
,
A. K. M. F.
, 1972, “
The Mechanics of an Organized Wave in Turbulent Shear Flow. Part 3. Theoretical Models and Comparison With Experiment
,”
J. Fluid Mech.
0022-1120,
54
, pp.
263
288
.
13.
Oley
,
L. A.
,
Manning
,
K. B.
,
Fontaine
,
A. A.
, and
Deutsch
,
S.
, 2005, “
Off-Design Considerations of the 50 cc Penn State Ventricular Assist Device
,”
Artif. Organs
0160-564X,
29
, pp.
378
386
.
14.
Hochareon
,
P.
, 2003, “
Development of Particle Image Velocimetry (PIV) for Wall Shear Stress Estimation Within a 50 cc Penn State Artificial Heart Ventricular Chamber
,” Ph.D. thesis, Department of Bioengineering, Pennsylvania State University, University Park, PA.
You do not currently have access to this content.