When car crash experiments are performed using cadavers or dummies, the active muscles’ reaction on crash situations cannot be observed. The aim of this study is to estimate muscles’ response of the major muscle groups using three-dimensional musculoskeletal model by dynamic simulations of low-speed sled-impact. The three-dimensional musculoskeletal models of eight subjects were developed, including 241 degrees of freedom and 86 muscles. The muscle parameters considering limb lengths and the force-generating properties of the muscles were redefined by optimization to fit for each subject. Kinematic data and external forces measured by motion tracking system and dynamometer were then input as boundary conditions. Through a least-squares optimization algorithm, active muscles’ responses were calculated during inverse dynamic analysis tracking the motion of each subject. Electromyography for major muscles at elbow, knee, and ankle joints was measured to validate each model. For low-speed sled-impact crash, experiment and simulation with optimized and unoptimized muscle parameters were performed at 9.4 m/h and 10 m/h and muscle activities were compared among them. The muscle activities with optimized parameters were closer to experimental measurements than the results without optimization. In addition, the extensor muscle activities at knee, ankle, and elbow joint were found considerably at impact time, unlike previous studies using cadaver or dummies. This study demonstrated the need to optimize the muscle parameters to predict impact situation correctly in computational studies using musculoskeletal models. And to improve accuracy of analysis for car crash injury using humanlike dummies, muscle reflex function, major extensor muscles’ response at elbow, knee, and ankle joints, should be considered.

1.
Rouhana
,
S. W.
,
Kankanala
,
S. V.
,
Prasad
,
P.
,
Rupp
,
J. D.
,
Jeffreys
,
T. A.
, and
Schneider
,
L. W.
, 2006, “
Biomechanics of 4-Point Seat Belt Systems in Farside Impacts
,”
Stapp Car Crash J.
,
50
, pp.
267
298
.
2.
Forman
,
J.
,
Lessley
,
D.
,
Kent
,
R.
,
Bostrom
,
O.
, and
Pipkorn
,
B.
, 2006, “
Whole-Body Kinematic and Dynamic Response of Restrained PMHS in Frontal Sled Tests
,”
Stapp Car Crash J.
,
50
, pp.
299
336
.
3.
Yang
,
K. H.
,
Hu
,
J.
,
White
,
N. A.
,
King
,
A. I.
,
Chou
,
C. C.
, and
Prasad
,
P.
, 2006, “
Development of Numerical Models for Injury Biomechanics Research: A Review of 50 Years of Publications in the Stapp Car Crash Conference
,”
Stapp Car Crash J.
,
50
, pp.
429
490
.
4.
Ruan
,
J. S.
,
El-Jawahri
,
R.
,
Rouhana
,
S. W.
,
Barbat
,
S.
, and
Prasad
,
P.
, 2006, “
Analysis and Evaluation of the Biofidelity of the Human Body Finite Element Model in Lateral Impact Simulations According to ISO-TR9790 Procedures
,”
Stapp Car Crash J.
,
50
, pp.
491
507
.
5.
Takhounts
,
E. G.
,
Eppinger
,
R. H.
,
Campbell
,
J. Q.
,
Tannous
,
R. E.
,
Power
,
E. D.
, and
Shook
,
L. S.
, 2003, “
On the Development of the SIMon Finite Element Head Model
,”
Stapp Car Crash J.
,
47
, pp.
107
133
.
6.
Begeman
,
P.
,
King
,
A. I.
,
Levine
,
R. S.
, and
Viano
,
D. C.
, 1980, “
Biodynamic Response of the Musculoskeletal System to Impact Acceleration
,”
Proceedings of the 24th Stapp Car Crash Conference
, SAE Paper No. 801312.
7.
Klopp
,
G. S.
,
Crandall
,
J. R.
,
Sieveka
,
E. M.
, and
Pilkey
,
W. D.
, 1995, “
Simulation of Muscle Tension in Pre-Impact Bracing
,”
IRCOBI Conference on the Biomechanics of Impact
.
8.
Gordon
,
S.
,
Ritcke
,
P. O.
,
Prince
,
J.
, and
Mcmeekin
,
R.
, 1977, “
Dynamic Characteristics of Human Leg Joints
,”
Proceedings of the 21st Stapp Car Crash Conference
, SAE Paper No. 770924.
9.
Williams
,
R.
, and
Seireg
,
A. A.
, 1977, “
Interactive Computer Modeling of the Musculoskeletal System
,”
IEEE Trans. Biomed. Eng.
0018-9294,
BME-24
, pp.
213
219
.
10.
Garg
,
A.
, and
Walker
,
P. S.
, 1990, “
Prediction of Total Knee Motion Using a Three-Dimensional Computer-Graphics Model
,”
J. Biomech.
0021-9290,
23
, pp.
45
58
.
11.
Wood
,
J. E.
,
Meek
,
S. G.
, and
Jacobsen
,
S. C.
, 1989, “
Quantitation of Human Shoulder Anatomy for Prosthetic Arm Control—I. Surface Modelling
,”
J. Biomech.
0021-9290,
22
, pp.
273
292
.
12.
Kadaba
,
M. P.
,
Ramakrishnan
,
H. K.
, and
Wootten
,
M. E.
, 1990, “
Measurement of Lower Extremity Kinematics During Level Walking
,”
J. Orthop. Res.
0736-0266,
8
, pp.
383
392
.
13.
Delp
,
S. L.
, and
Loan
,
J. P.
, 1995, “
A Graphics-Based Software System to Develop and Analyze Models of Musculoskeletal Structures
,”
Comput. Biol. Med.
0010-4825,
25
, pp.
21
34
.
14.
de Leva
,
P.
, 1996, “
Adjustments to Zatsiorsky-Seluyanov’s Segment Inertia Parameters
,”
J. Biomech.
0021-9290,
29
, pp.
1223
1230
.
15.
Zatsiorsky
,
V.
, and
Seluyanov
,
V.
, 1985, “
Estimation of the Mass and Inertia Characteristics of the Human Body by Means of the Best Predictive Regression Equations
” in
Biomechanics IX-B
,
D. A.
Winter
,
R. W.
Norman
,
R. P.
Wells
,
K. C.
Hayes
, and
A. E.
Patlaa
, eds.,
Human Kinetics
,
Champaign, IL
, pp.
233
239
.
16.
Anderson
,
F. C.
, and
Pandy
,
M. G.
, 2001, “
Static and Dynamic Optimization Solutions for Gait are Practically Equivalent
,”
J. Biomech.
0021-9290,
34
, pp.
153
161
.
17.
Lieber
,
R. L.
,
Loren
,
G. J.
, and
Friden
,
J.
, 1994, “
In Vivo Measurement of Human Wrist Extensor Muscle Sarcomere Length Changes
,”
J. Neurophysiol.
0022-3077,
71
, pp.
874
881
.
18.
Murray
,
W. M.
,
Buchanan
,
T. S.
, and
Delp
,
S. L.
, 2000, “
The Isometric Functional Capacity of Muscles That Cross the Elbow
,”
J. Biomech.
0021-9290,
33
, pp.
943
952
.
19.
Zajac
,
F. E.
, 1989, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
0278-940X,
17
, pp.
359
411
.
20.
Davidsson
,
J.
,
Lövsund
,
P.
,
Ono
,
K.
,
Svensson
,
M.
, and
Inami
,
S.
, 1999, “
A Comparison Between Volunteer, BioRID P3 and Hybrid III Performance in Rear Impacts
,”
IRCOBI Conference
, pp.
165
178
.
21.
Delp
,
S. L.
,
Loan
,
J. P.
,
Hoy
,
M. G.
,
Zajac
,
F. E.
,
Topp
,
E. L.
, and
Rosen
,
J. M.
, 1990, “
An Interactive Graphics-Based Model of the Lower Extremity to Study Orthopaedic Surgical Procedures
,”
IEEE Trans. Biomed. Eng.
0018-9294,
37
, pp.
757
767
.
22.
Brand
,
R. A.
,
Pedersen
,
D. R.
, and
Friederich
,
J. A.
, 1986, “
The Sensitivity of Muscle Force Predictions to Changes in Physiologic Cross-Sectional Area
,”
J. Biomech.
0021-9290,
19
, pp.
589
596
.
23.
Tropiano
,
P.
,
Thollon
,
L.
,
Arnoux
,
P. J.
,
Huang
,
R. C.
,
Kayvantash
,
K.
,
Poitout
,
D. G.
, and
Brunet
,
C.
, 2004, “
Using a Finite Element Model to Evaluate Human Injuries Application to the HUMOS Model in Whiplash Situation
,”
Spine
0362-2436,
29
, pp.
1709
1716
.
24.
Huang
,
Y.
,
King
,
A. I.
, and
Cavanaugh
,
J. M.
, 1994, “
A MADYMO Model of Near-Side Human Occupants in Side Impacts
,”
J. Biomech. Eng.
0148-0731,
116
, pp.
228
235
.
25.
Desantis Klinich
,
K.
,
Hulbert
,
G. M.
, and
Schneider
,
L. W.
, 2002, “
Estimating Infant Head Injury Criteria and Impact Response Using Crash Reconstruction and Finite Element Modeling
,”
Stapp Car Crash J.
,
46
, pp.
165
194
.
26.
Franklyn
,
M.
,
Fildes
,
B.
,
Zhang
,
L.
,
Yang
,
K.
, and
Sparke
,
L.
, 2005, “
Analysis of Finite Element Models for Head Injury Investigation: Reconstruction of Four Real-World Impacts
,”
Stapp Car Crash J.
,
49
, pp.
1
32
.
27.
Penrose
,
J. M.
,
Holt
,
G. M.
,
Beaugonin
,
M.
, and
Hose
,
D. R.
, 2002, “
Development of an Accurate Three-Dimensional Finite Element Knee Model
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
5
, pp.
291
300
.
You do not currently have access to this content.